answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna007 [38]
2 years ago
5

Under the Big Top elephant, Ella (2500 kg), is attracted to Phant, the 3,000 kg

Physics
1 answer:
Vladimir [108]2 years ago
4 0

Under the Big Top elephant, Ella (2500 kg), is attracted to Phant, the 3,000 kg elephant. They are separated by 8

You might be interested in
A Porsche 944 Turbo has a rated engine power of 217hp . 30% of the power is lost in the drive train, and 70% reaches the wheels.
scZoUnD [109]

Explanation:

(a)  It is given that two-third of weight is over the drive wheels. So, mathematically, w = \frac{2}{3}mg.

Hence, maximum force is expressed as follows.

                F_{max} = \mu_{s} \times w

           m \times a_{max} = \mu_{s} (\frac{2}{3} mg)

Hence, the maximum acceleration is calculated as follows.

             a_{max} = \frac{2}{3} \mu_{s} \times g

                          = \frac{2}{3} \times 1.00 \times 9.8 m/s^{2}

                          = 6.53 m/s^{2}

Hence, the maximum acceleration of the Porsche on a concrete surface where μs = 1 is 6.53 m/s^{2}.

(b)  Since, 30% of the power is lost in the drive train. So, the new power is 70% of P_{max}.

That is,   new power = 0.7 \times P_{max}

Now, the expression for power in terms of force and velocity is as follows.

                      P = F_{max} \nu

              0.7 P_{max} = ma_{max} \nu

Therefore, speed of the Porsche at maximum power output is as follows.

            \nu = 0.7 \times \frac{P_{max}}{ma_{max}}

                      = 0.7 \times \frac{217 hp \times \frac{746 W}{1 hp}}{1500 kg \times 6.53 m/s^{2}}

                      = 11.568 m/s

                      = 11.57 m/s

Therefore, speed of the Porsche at maximum power output is 11.57 m/s.

(c)   The time taken will be calculated as follows.

             time = \frac{\text{velocity}}{\text{acceleration}}

                     = \frac{11.57 m/s}{6.53 m/s^{2}}

                     = 1.77 s

Therefore, the Porsche takes 1.77 sec until it reaches the maximum power output.

6 0
2 years ago
The average mass of an automobile in the United States is about 1.440x10^6 g express this mass in kilograms
-BARSIC- [3]
From the problem statement, this is a conversion problem. We are asked to convert from units of grams to units of kilograms. To do this, we need a conversion factor which would relate the different units involved. We either multiply or divide this certain value to the original measurement depending on what is asked. From literature, we will find that 1000 grams is equal to 1 kilogram. We use this as follows:

<span> 1.440x10^6 g ( 1 kg / 1000 g ) = 1440 kg</span><span>
</span>
8 0
2 years ago
A 1.47-newton baseball is dropped from a height of 10.0 meters and falls through the air to the ground. The kinetic energy of th
vagabundo [1.1K]

Answer:

The maximum amount of mechanical energy converted to internal energy during the fall is 26.7 joules

Explanation:

Potential Energy (PE) = weight of baseball × height = 1.47N × 10m = 14.7Nm = 14.7 joules

Kinetic Energy (KE) = 12 joules

Maximum amount of mechanical energy converted to internal energy during the fall = PE + KE = 14.7 joules + 12 joules = 26.7 joules

8 0
2 years ago
Read 2 more answers
Determine the values of m and n when the following mass of the Earth is written in scientific notation: 5,970,000,000,000,000,00
yuradex [85]

Explanation:

Mass of the Earth is equal to,

m=5,970,000,000,000,000,000,000,000\ kg

Any number can be written in the form of scientific notation as :

N=m\times 10^n

m is the real number

n is any integer

Mass of the earth can be written in the form of scientific notation as :

m=5.97\times 10^{24}\ m

Here,

m = 5.97

n = 24

Hence, this is the required solution.                                                      

7 0
2 years ago
A worker stands still on a roof sloped at an angle of 35° above the horizontal. He is prevented from slipping by static friction
aleksley [76]

Answer:

99.63 kg

Explanation:

From the force diagram

N = normal force on the worker from the surface of the roof

f = static frictional force = 560 N

θ = angle of the slope = 35

m = mass of the worker

W = weight of the worker = mg

W Cosθ = Component of the weight of worker perpendicular to the surface of roof

W Sinθ = Component of the weight of worker parallel to the surface of roof

From the force diagram, for the worker not to slip, force equation must be

W Sinθ = f

mg Sinθ = f

m (9.8) Sin35 = 560

m = 99.63 kg

5 0
2 years ago
Other questions:
  • Which of the following are linear defects?. . An edge dislocation. . A Frenkel defect. . A screw dislocation. . A Schottky defec
    6·1 answer
  • The graph indicates Linda’s walk.
    8·2 answers
  • A photon has an energy of 5.53 × 10–17 j. what is its frequency in s–1 (h = 6.63 × 10–34 j • s)?
    6·2 answers
  • A target in a shooting gallery consists of a vertical square wooden board, 0.250 m on a side and with mass 0.750 kg, that pivots
    14·1 answer
  • Go to the roller coaster simulation and click on the "launch" button. Pay attention to the pie chart as the roller coaster moves
    8·2 answers
  • A Roller Derby Exhibition recently came to town. They packed the gym for twoconsecutive weekend nights at South's field house. O
    7·1 answer
  • X-rays with an energy of 300 keV undergo Compton scattering from a target. If the scattered rays are detected at 30 relative to
    8·2 answers
  • Index of refraction
    15·1 answer
  • From mechanics, you may recall that when the acceleration of an object is proportional to its coordinate, d2xdt2=−kmx=−ω2x , suc
    10·1 answer
  • What is the mass of a student who weighs 618 Newton?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!