The unit 'mb' means millibar which is equivalent to 1/1000 of 1 bar. To convert the units from bar to atmospheres (atm) and to inches Hg (inHg), we need to know the conversion factors.
a.) 1 atm = 1.01325 bar
0.92 mb(1 bar/1000 mbar)(1 atm/1.01325 bar) =<em> 9.08×10⁻⁴ atm</em>
b.) 1 bar = 29.53 inHg
0.92 mb(1 bar/1000 mbar)(29.53 inHg/1 bar) =<em> 0.027 inHg</em>
Answer:
a) L = 0.75m f₁ = 113.33 Hz
, f₃ = 340 Hz, b) L=1.50m f₁ = 56.67 Hz
, f₃ = 170 Hz
Explanation:
This resonant system can be simulated by a system with a closed end, the tile wall and an open end where it is being sung
In this configuration we have a node at the closed end and a belly at the open end whereby the wavelength
With 1 node λ₁ = 4 L
With 2 nodes λ₂ = 4L / 3
With 3 nodes λ₃ = 4L / 5
The general term would be λ_n= 4L / n n = 1, 3, 5, ((2n + 1)
The speed of sound is
v = λ f
f = v / λ
f = v n / 4L
Let's consider each length independently
L = 0.75 m
f₁ = 340 1/4 0.75 = 113.33 n
f₁ = 113.33 Hz
f₃ = 113.33 3
f₃ = 340 Hz
L = 1.5 m
f₁ = 340 n / 4 1.5 = 56.67 n
f₁ = 56.67 Hz
f₃ = 56.67 3
f₃ = 170 Hz
Answer:
The final size is approximately equal to the initial size due to a very small relative increase of
in its size
Solution:
As per the question:
The energy of the proton beam, E = 250 GeV =
Distance covered by photon, d = 1 km = 1000 m
Mass of proton, 
The initial size of the wave packet, 
Now,
This is relativistic in nature
The rest mass energy associated with the proton is given by:


This energy of proton is 
Thus the speed of the proton, v
Now, the time taken to cover 1 km = 1000 m of the distance:
T = 
T = 
Now, in accordance to the dispersion factor;


Thus the increase in wave packet's width is relatively quite small.
Hence, we can say that:

where
= final width
Answer:
t = 2 s
Explanation:
As we know that fish is pulled upwards with uniform maximum acceleration
then we will have

here we know that maximum possible acceleration of so that string will not break is given as

now we have


now for such acceleration we can use kinematics


t = 2 s
The acceleration is the change of speed/velocity over time. Thus to calculate this you do (V1-V2)/T or (11.2-9.6)/4 or 0.4 m/s^2