answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana66690 [7]
2 years ago
6

When listening to tuning forks of frequency 256 Hz and 260 Hz, one hears the following number of beats per second. (A) 0 (B) 2 (

C) 4 (D) 8 (E) 258
Physics
1 answer:
Degger [83]2 years ago
3 0

Answer:

(C) 4 beats per second.

Explanation:

As we know that the no of beats can be calculated as.

No. of beats is equal to difference in the tuning forks frequencies.

So,

n= \nu _{1}- \nu _{2}.

Substitute the values of frequencies of 2 tuning forks in the above equation.

n=(260 Hz-256 Hz)\\n=4

Therefore the number of beats per second will be hear by the observer is 4 beats per second.

You might be interested in
In a distant solar system, a giant planet has
sergeinik [125]

Answer:

mass of the planet: 5.9\,10^{26}\,kg

Explanation:

When a moon keeps a circular orbit around a planet, it is the force of gravity the one that provides the centripetal force to keep it in its circular trajectory of radius R. So if we can write that in such cases (being the mass of the planet "M" and the mass of the moon "m"), we can form an equation by making the centripetal force on the moon equal the force of gravity (using the Newton's Universal Law of Gravity):

m\frac{v^2}{R}=G\frac{M\,m}{R^2}

where we used here the tangential velocity (v) of the moon around the planet. This equation can be further simplified by dividing both sides by "m" and multiplying both sides by the orbital radius R:

m\frac{v^2}{R}=G\frac{M\,m}{R^2}\\v^2=G\frac{M}{R}

Notice that the mass of the moon has actually disappeared from the equation, which tells us that the orbiting velocity and period do not depend on the mass of the moon, but on the mass of the actual planet.

We know the orbital radius R (5.32\,10^5\,km=5.32\,10^8\,m, the value of the Universal Gravitational constant G, and we can estimate the value of the tangential velocity of the moon since we know it period: 36.3 hrs = 388800 seconds.

We know that the moon makes a full circumference (2\,\pi\,R) in 388800 seconds, therefore its tangential velocity is:

v=\frac{2\,\pi\,5.32\,10^8}{388800} \frac{m}{s} \\v=8.6\,10^3\,\frac{m}{s}

where we rounded the velocity to one decimal.

Notice that we have converted all units to the SI system, so when using the formula to solve for the mass of the planet, the answer comes directly in kg.

Now we use this value for the tangential velocity to estimate the mass of the planet in the first equation we made and simplified:

v^2=G\frac{M}{R}\\M=\frac{v^2\,R}{G} \\M=\frac{(8.6\,10^3)^2\,5.32\,10^8}{6.67\,10^{-11}}kg\\M=5.9\,10^{26}\,kg

8 0
2 years ago
Two identical ladders are 3.0 m long and weigh 600 N each. They are connected by a hinge at the top and are held together by a h
ruslelena [56]

Answer:

The tension in the rope is 281.60 N.

Explanation:

Given that,

Length = 3.0 m

Weight = 600 N

Distance = 1.0 m

Angle = 60°

Consider half of the ladder,

let tension be T, normal reaction force at ground be F, vertical reaction at top hinge be Y and horizontal reaction force be X.

Y+F=600....(I)

X=T.....(II)

On taking moment about base

X\times l\cos\theta+Y\times l\sin\theta-F\dfrac{l}{2}\sin\theta-T\times d=0

Put the value into the formula

X\times3\cos30+Y\times3\sin30-600\times1.5\sin30-T\times1=0

3\cos30 T-T=600\times1.5\sin30-Y \times3\sin30

1.598T=450-1.5(600-F)....(III)

We need to calculate the force for ladder

2F=600\trimes  2

F=600\ N

We need to calculate the tension in the rope

From equation (3)

1.598T=450-1.5(600-600)

1.598T=450

T=\dfrac{450}{1.598}

T=281.60\ N

Hence, The tension in the rope is 281.60 N.

7 0
2 years ago
Read 2 more answers
Consider a steel guitar string of initial length l=1.00m and cross-sectional area a=0.500mm2. the young's modulus of the steel i
laiz [17]
L = 1.00 m, the original length
A = 0.5 mm² = 0.5 x 10⁻⁶ m², the cross sectional area
E = 2.0 x 10¹¹ n/m², Young's modulus
P = 1500 N, the applied tension

Calculate the stress.
σ = P/A = (1500 N)/(0.5 x 10⁻⁶ m²) = 3 x 10⁹ N/m²

Let δ =  the stretch of the string.
Then the strain is
ε = δ/L

By definition, the strain is
ε = σ/E = (3 x 10⁹ N/m²)/(2 x 10¹¹ N/m²) = 0.015
Therefore
δ/(1 m) = 0.015
δ = 0.015 m = 15 mm

Answer:  15 mm
4 0
2 years ago
A 9V battery is directly connected to each of 3 LED bulbs. Select the statement that accurately describes this circuit. A) A dir
Likurg_2 [28]
First off, you can cross out alternating current because a 9V battery doesn't give out AC, it gives out solely DC. If the battery is connected to each battery individually, then they are in parallel. So, according to Kirchhoff's Voltage Law, in parallel, V total = V1 = V2= V3..
So I'd say B) !
7 0
2 years ago
Read 2 more answers
A windowpane is half a centimeter thick and has an area of 1.0 m2. The temperature difference between the inside and outside sur
polet [3.4K]

To solve this problem it is necessary to apply the concepts related to the heat flux rate expressed in energetic terms. The rate of heat flow is the amount of heat that is transferred per unit of time in some material. Mathematically it can be expressed as:

\frac{Q}{t} = \frac{kA}{L} (T_H - T_C)

Where

k = 0.84 J/s⋅m⋅°C (The thermal conductivity of the material)

A = 1m^2 Area

L = 5*10^{-3}m Length

T_H= Temperature of the "hot"reservoir

T_C= Temperature of the "cold"reservoir

Replacing with our values we have that,

\frac{Q}{t} = \frac{kA}{L} (T_H - T_C)

\frac{Q}{t} = \frac{(0.84)(1)}{0.005} (15)

\frac{Q}{t} = 2520J/s

Therefore the correct answer is B.

3 0
2 years ago
Other questions:
  • The Hoover Dam produces electricity which powers parts of Nevada and California. It is made up of 17 generators, each of which p
    12·2 answers
  • A cave explorer travels 3.0 m eastward, then 2.5 m northward, and finally 15.0 m westward. use the graphical method to find the
    8·2 answers
  • Two negative charges that are both -0.3C push each other apart with a force of 19.2 N. How far apart are the two charges?
    15·1 answer
  • A band director instructs students to play a pitch louder. How will the sound wave change when the band plays the same pitch lou
    8·2 answers
  • You are waiting to turn left into a small parking lot. a car approaching from the opposite direction has a turn signal on. you s
    15·1 answer
  • If a set of displacement vectors laid head to tail make a closed polygon, what is the resultant vector?
    8·1 answer
  • Two stones resembling diamonds are suspected of being fakes. To determine if the stones might be real, the mass and volume of ea
    5·1 answer
  • PLEASE HELPPP 100 POINTS HURRY !!!!Which diagram best illustrates the magnetic field of a bar magnet? A bar magnet with a north
    13·2 answers
  • A rod 16.0 cm long is uniformly charged and has a total charge of -25.0 µC. Determine the magnitude and direction of the electri
    9·1 answer
  • A girl weighing 45kg is standing on the floor, exerting a downward force of 200N on the floor. The force exerted on her by the f
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!