Answer:
Magnetic field, B = 0.004 mT
Explanation:
It is given that,
Charge, 
Mass of charge particle, 
Speed, 
Acceleration, 
We need to find the minimum magnetic field that would produce such an acceleration. So,

For minimum magnetic field,



B = 0.004 T
or
B = 4 mT
So, the magnetic field produce such an acceleration at 4 mT. Hence, this is the required solution.
Answer:
The average magnitude of magnetic field B= 0.0433/ d Tesla
(You have not provided length of side of loop, so if you divide this value by length you will get value of magnetic field.)
Explanation:
Induced emf
where B= magnetic field
d= breadth of rectangular piece
V= velocity with which the rectangular piece = o.o6m/s
n= no of turns = 10
EMF = 26mV
since d (breadth of the frame) is not given, I will use it as a variable
EMF= n×B×d×V ------------------(1) (EMF induced due to multiple turns)
From eq 1, we get
B= (EMF)/(n d V)
B= (26 X 0.001) / (10 d 0.06)
B= 0.0433/ d Tesla
Answer:
= 829.69 Watt
≅ 830 Watt
Explanation:
Given that,
Velocity of air flow = 12.5m/s
Rate of flow of air = 9m³/s
Density of air = 1.18kg/m³
power by kinetic energy = 1/2(mv²)
mass = density × volume
m = 1.18 × 9
= 10.62 kg/s
power = 1/2 mV²
= 1/2 (10.62 × 12.5²)
= 829.69 Watt
≅ 830 Watt
Flow rate
u
=
9
m
3
/
s
Velocity of the air
V
=
8
m/s
Density of the air
ρ
=
1.18
kg
/
m
3
Answer: X
Explanation:
This situation can be illustrated as a car in circular motion (image attached).
In circular motion the acceleration vector
is always directed toward the center of the circumference (that's why it's called centripetal acceleration).
So, in this case the arrow labeled X is the only that points toward the center, hence it represents the car's centripetal acceleration