Answer:
Show attached picture
Explanation:
Let's call V the voltage provided by the battery in the circuit. M is the multimeter (let's call
its internal resistance) and R indicates the resistance of the light bulb.
We know that the meter's internal resistance is 1000 times higher than the bulb's resistance:
(1)
Both the meter and the bulb are connected in parallel to the battery, so they both have same potential difference at their terminals:

Using Ohm's law,
, we can rewrite the previous equation as:

where
is the current in the meter
is the current in the bulb
Using (1), this equation becomes

so, the current in the meter is 1000 times less than through the bulb.
Answer:
The current is 2.0 A.
(A) is correct option.
Explanation:
Given that,
Length = 150 m
Radius = 0.15 mm
Current density
We need to calculate the current
Using formula of current density


Where, J = current density
A = area
I = current
Put the value into the formula


Hence, The current is 2.0 A.
Answer:
W = 506.75 N
Explanation:
tension = 2300 N
Rider is towed at a constant speed means there no net force acting on the rider.
hence taking all the horizontal force and vertical force in consideration.
net horizontal force:
F cos 30° - T cos 19° = 0
F cos 30° = 2300 × cos 19°
F = 2511.12 N
net vertical force:
F sin 30° - T sin 19°- W = 0
W = F sin 30° - T sin 19°
W = 2511.12 sin 30° - 2300 sin 19°
W = 506.75 N
Answer:
The answer is "
"
Explanation:
The formula for velocity:


In this system we have the conservation of angular momentum: L₁ = L₂
We can write L = m·r²·ω
Therefore, we will have:
m₁ · r₁² · ω₁ = m₂ · r₂² · ω₂
The mass stays constant, therefore it cancels out, and we can solve for ω<span>₂:
</span>ω₂ = (r₁/ r₂)² · ω<span>₁
Since we know that r</span>₁ = 4r<span>₂, we get:
</span>ω₂ = (4)² · ω<span>₁
= 16 </span>· ω<span>₁
Hence, the protostar will be rotating 16 </span><span>times faster.</span>