answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ratling [72]
2 years ago
10

Consider heat transfer between two identical hot solid bodies and their environments. The first solid is dropped in a large cont

ainer filled with water, while the second one is allowed to cool naturally in the air. For which solid is the lumped system analysis more likely to be applicable? Why?
Physics
1 answer:
sergeinik [125]2 years ago
4 0
<h2>For Second Solid Lumped System is Applicabe</h2>

Explanation:

Considering heat transfer between two identical hot solid bodies and their environments -

  • If the first solid is dropped in a large container filled with water, while the second one is allowed to cool naturally in the air than for second solid, the lumped system analysis more likely to be applicable
  • The  reason is that a lumped system analysis is more likely to be applicable in the air than in water as the convection heat transfer coefficient so that the Biot number is less than or equal to 0.1 that is much smaller in air

Biot number = the ratio of conduction resistance within the body to convection resistance at the surface of the body

∴ For a lumped system analysis Biot number should be less than 0.1

You might be interested in
A baseball player exerts a force of 100 N on a ball for a distance of 0.5 mas he throws it. If the ball has a mass of 0.15 kg, w
Aloiza [94]

Answer:

25.82 m/s

Explanation:

We are given;

Force exerted by baseball player; F = 100 N

Distance covered by ball; d = 0.5 m

Mass of ball; m = 0.15 kg

Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.

We should note that work done is a measure of the energy exerted by the baseball player.

Thus;

F × d = ½mv²

100 × 0.5 = ½ × 0.15 × v²

v² = (2 × 100 × 0.5)/0.15

v² = 666.67

v = √666.67

v = 25.82 m/s

4 0
1 year ago
The magnetic field around the head has been measured to be approximately 3.00×10−8 gauss . Although the currents that cause this
konstantin123 [22]

Answer:

3.81972\times 10^{-7}\ A

Explanation:

B = Magnetic field = 3\times 10^{-8}\ G

d = Diameter of loop = 16 cm

r = Radius = \frac{d}{2}=\frac{16}{2}=8\ cm

i = Current

\mu_0 = Vacuum permeability = 4\pi \times 10^{-7}\ H/m

The magnetic field of a loop is given by

B=\frac{\mu_0i}{2r}\\\Rightarrow i=\frac{B2r}{\mu_0}\\\Rightarrow i=\frac{3\times 10^{-8}\times 10^{-4}\times 2\times 0.08}{4\pi\times 10^{-7}}\\\Rightarrow i=3.81972\times 10^{-7}\ A

The current needed to produce such a field at the center of the loop is 3.81972\times 10^{-7}\ A

5 0
2 years ago
Which of the following forms of radiation can penetrate up to a 2-cm layer of skin tissue?
Dmitry_Shevchenko [17]

Answer:

d). X-rays

Explanation:

X -rays are also called photons. They are a packet of electro magnetic radiation. X rays originate from the shell of the electron.  X rays are highly penetrating, and have a shorter wavelength than alpha particles and the beta particles. They are similar to the gamma rays which are also has a high penetrating power and easily pass through the human body.

 Thus X rays can penetrate a skin tissue upto 2 cm thickness.

4 0
2 years ago
Read 2 more answers
The diagram below depicts all the forces acting on an object. Use both vector resolution and vector
maksim [4K]

Answer:

A

Explanation:

i just took the test

3 0
2 years ago
A photon ionizes a hydrogen atom from the ground state. The liberated electron 11. recombines with a proton into the first excit
anygoal [31]

Answer:

a) 23.2 e V

b) energy of the original photon is 36.8 eV

Explanation:

given,

energy at ground level = -13.6 e V

energy at first exited state = - 3.4 e V

A photon of energy ionized from ground state and electron of energy K is released.

h ν₁ - 13.6 = K

K combine with photon in first exited state giving out photon of energy

h\nu_2 =\dfrac{hc}{\lambda}=\dfrac{12400}{466}

            = 26.6 e V

h c = 6.626 ×  10⁻³⁴ ×  3  × 10⁸  = 12400 e V A°

K + ( 3.4 ) = 26.6 e V

a) energy of free electron

K = 26.6 - 3.4 = 23.2 e V

b) energy of the original photon

h ν₁ - 13.6 = K

h ν₁  = 23.2 + 13.6

       = 36.8 e V

energy of the original photon is 36.8 eV

3 0
2 years ago
Other questions:
  • The human eye can respond to as little as 10^−18 J of light energy. For a wavelength at the peak of visual sensitivity, 550 nm,
    15·2 answers
  • Find the centripetal force needed by a 1275 kg car to make a turn of radius 40.0 m at a speed of 25.0 km/h
    12·2 answers
  • 50 POINTS! A Boy throws a ball horizontally a distance of 22m downrange from the top of a tower that is 20.0m tall. What is his
    7·1 answer
  • Which of the following statements are true of an object in orbit around Earth? (Select all that apply.) The gravity force on the
    8·1 answer
  • Two cables of the same length are made of the same material, except that one cable has twice the diameter of the other cable. Wh
    14·1 answer
  • A person of mass m stands on roller skates facing a wall.After pushing against the wall with a constant force F he moves away, r
    9·1 answer
  • a cylinder has a radius of 2.1cm and a length of 8.8cm .total charge 6.1 x 10^-7C is distributed uniformly throughout. the volum
    14·1 answer
  • Modern wind turbines generate electricity from wind power. The large, massive blades have a large moment of inertia and carry a
    7·1 answer
  • The diagram below shows a person using a device called a jetpack. Water is forced downwards from the jetpack and produces an upw
    5·1 answer
  • A gold puck has a mass of 12 kg and a velocity of 5i – 4j m/s prior to a collision with a stationary blue puck whose mass is 18
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!