answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ratling [72]
2 years ago
10

Consider heat transfer between two identical hot solid bodies and their environments. The first solid is dropped in a large cont

ainer filled with water, while the second one is allowed to cool naturally in the air. For which solid is the lumped system analysis more likely to be applicable? Why?
Physics
1 answer:
sergeinik [125]2 years ago
4 0
<h2>For Second Solid Lumped System is Applicabe</h2>

Explanation:

Considering heat transfer between two identical hot solid bodies and their environments -

  • If the first solid is dropped in a large container filled with water, while the second one is allowed to cool naturally in the air than for second solid, the lumped system analysis more likely to be applicable
  • The  reason is that a lumped system analysis is more likely to be applicable in the air than in water as the convection heat transfer coefficient so that the Biot number is less than or equal to 0.1 that is much smaller in air

Biot number = the ratio of conduction resistance within the body to convection resistance at the surface of the body

∴ For a lumped system analysis Biot number should be less than 0.1

You might be interested in
In the Daytona 500 auto race, a Ford Thunderbird and a Mercedes Benz are moving side by side down a straightaway at 71.0 m/s. Th
qaws [65]

Answer:

The distance between both cars is 990 m

Explanation:

The equations for the position and the velocity of an object moving in a straight line are as follows:

x = x0 + v0 * t + 1/2 * a * t²

v = v0 + a * t

where:

x = position of the car at time "t"

x0 = initial position

v0 = initial speed

t = time

a = acceleration

v = velocity

First let´s find how much time it takes the driver to come to stop (v = 0).  We will consider the origin of the reference system as the point at which the driver realizes she must stop. Then x0 = 0

With the equation of velocity, we can obtain the acceleration and replace it in the equation of position, knowing that the position will be 250 m at that time.

v = v0 + a*t

v-v0 / t = a

0 m/s - 71.0 m/s / t =a

-71.0 m/s / t = a

Replacing in the equation for position:

x = v0* t +1/2 * a * t²

250 m = 71.0 m/s * t + 1/2 *(-71.0 m/s / t) * t²

250 m = 71.0 m/s * t - 1/2 * 71.0 m/s * t

250m = 1/2 * 71.0m/s *t

<u>t = 2 * 250 m / 71.0 m/s = 7.04 s</u>

It takes the driver 7.04 s to stop.

Then, we can calculate how much time it took the driver to reach her previous speed. The procedure is the same as before:

v = v0 + a*t

v-v0 / t = a      now v0 = 0 and v = 71.0 m/s

(71.0 m/s - 0 m/s) / t = a

71.0 m/s / t =a

Replacing in the position equation:

x = v0* t +1/2 * a * t²      

390 m = 0 m/s * t + 1/2 * 71.0 m/s / t * t²       (In this case, the initial position is in the pit, then x0 = 0 because it took 390 m from the pit to reach the initial speed).

390m * 2 / 71.0 m/s = t

<u>t = 11.0 s</u>

In total, it took the driver 11.0s + 5.00 s + 7.04 s = 23.0 s to stop and to reach the initial speed again.

In that time, the Mercedes traveled the following distance:

x = v * t = 71.0 m/s * 23.0 s = 1.63 x 10³ m

The Thunderbird traveled in that time 390 m + 250 m = 640 m.

The distance between the two will be then:

<u>distance between both cars = 1.63 x 10³ m - 640 m = 990 m.  </u>

3 0
2 years ago
You've always wondered about the acceleration of the elevators in the 101 story-tall Empire State Building. One day, while visit
love history [14]

To develop this problem we will proceed to convert all units previously given to the international system for which we have to:

140 lb = 63.5 kg \rightarrow 63.5kg (9.8m/s) =622.3 N

120 lb = 54.4 kg \rightarrow 54.4kg (9.8m/s)= 533 N

170 lb = 77.1 kg \rightarrow 77.1 kg (9.8m/s) =756 N

PART A ) From the given values the minimum acceleration will be given for 120Lb and maximum acceleration when 170Lb is reached therefore:

F = 756 - 622.3

F = 133.7N

Through the Newtonian relationship of the Force we have to:

F= ma

a = \frac{F}{m}

a = \frac{133.7}{63.5}

a = 2.1m/s^2

PART B) For the maximum magnitude of the acceleration downward we have that:

F = 622.3 - 533

F = 89.3N

Through the Newtonian relationship of the Force we have to:

F= ma

a = \frac{F}{m}

a = \frac{89.3}{63.5}

a = 2.1m/s^2

a = 1.04 m/s^2

7 0
2 years ago
If a neutral object such as paper comes close to a positively charged plastic rod, what type of charge accumulates on the side o
Nataliya [291]
The answer would be negative charge because +, and - dont like each other so they retract from each other.
3 0
2 years ago
Read 2 more answers
Dane is standing on the moon holding an 8 kilogram brick 2 metres above the ground. How much energy is in the brick's gravitatio
Nadya [2.5K]

The gravitational potential energy of the brick is 25.6 J

Explanation:

The gravitational potential energy of an object is the energy possessed by the object due to its position in a gravitational field.

Near the surface of a planet, the gravitational potential energy is given by

PE=mgh

where

m is the mass of the object

g is the strength of the gravitational field

h is the height of the object relative to the ground

For the brick in this problem, we have:

m = 8 kg is its mass

g = 1.6 N/kg is the strenght of the gravitational field on the moon

h = 2 m is the height above the ground

Substituting, we find:

PE=(8)(1.6)(2)=25.6 J

Learn more about potential energy:

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

3 0
1 year ago
Read 2 more answers
Un cuerpo se mueve en línea recta segun la ecuación x=10+20t-4.9t2 (x está expresado en metros y t en segundos). ¿Cuál es la lon
lora16 [44]

Answer:

La longitud del camino recorrido es de 25.9 [m]

Explanation:

Se reemplaza el valor de tiempo en segundos en la ecuación dada de desplazamiento

x=10+20*(3) - 4.9*(3)^2

x= 25.9 [metros]

4 0
2 years ago
Read 2 more answers
Other questions:
  • In a game of egg-toss, you and a partner are throwing an egg back and forth trying not to break it. Given your knowledge of mome
    8·1 answer
  • A star is moving toward the earth with a speed of 0.9 c (90% the speed of light). it emits light, which moves away from the star
    12·1 answer
  • A soccer player attempting to steal the ball from an opponent was extending her knee at 50 deg/s when her foot struck the oppone
    15·1 answer
  • Whose research showed that atoms consist of small positively charged nuclear centers and lots of empty space populated by electr
    13·1 answer
  • The momentum of an object is determined to be 7.2 × 10-3 kg⋅m/s. Express this quantity as provided or use any equivalent unit. (
    12·1 answer
  • 10 C of charge are placed on a spherical conducting shell. A point particle with a charge of –3C is placed at the center of the
    15·1 answer
  • A 10 kg migratory swan cruises at 20 m/s. A calculation that takes into ac- count the necessary forces shows that this motion re
    9·1 answer
  • A ball bearing of radius of 1.5 mm made of iron of density
    11·1 answer
  • E. Describe in short the structure of a mercury barometer<br>​
    5·1 answer
  • A physics teacher is designing a ballistics event for a science competition. The ceiling is 3.00m high, and the maximum velocity
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!