Explanation:
It is given that,
Mass of the car 1, 
Initial speed of car 1,
(east)
Mass of the car 2, 
Initial speed of car 2,
(north)
(b) As the cars stick together. It is a case of inelastic collision. Let V is the common speed after the collision. Using the conservation of momentum as :




The magnitude of speed,

V = 12.22 m/s
(b) Let
is the direction the wreckage move just after the collision. It is given by :



Hence, this is the required solution.
<h2>Answer:</h2>
The refractive index is 1.66
<h2>Explanation:</h2>
The speed of light in a transparent medium is 0.6 times that of its speed in vacuum
.
Refractive index of medium = speed of light in vacuum / speed of light in medium
So
RI = 1/0.6 = 5/3 or 1.66
Answer: The weight of a 72.0 kg astronaut on the Moon is 117.36 N.
Explanation:
Mass of the astronaut on the moon , m= 72 kg
Acceleration due to gravity on moon,g = 1.63 
According to Newton second law of motion: F = ma
This will changes to = Weight = mass × g

The weight of a 72.0 kg astronaut on the Moon is 117.36 N.
In <u>370 K to 375 K </u>temperature intervals of 5 K, would be the greatest increase in the entropy of the sample.
Option: C
<u>Explanation</u>:
Because the largest difference in molar entropy occurs when a condensed phase (solid/liquid) transforms to the gas phase. Then change in entropy is equal to heat transfer divided by temperature:
.
According to given ice sample at 260 K, when this solid sample start converting into liquid sample it will gain positive temperature and steam will take place near 373 K (273 K ice temperature +
temperature of boiling water). Therefore it’s very obvious that greatest increase in entropy will occur during 370 K – 375 K.
Using p=v * i
p=250 * 0.8=200w = 0.2kw
power consumed in a day=0.2 *8=1.6 kwh
for one month=1.6 * 30 =48kwh
monthly bills= 48 *3 = Rs 144