Answer:
Explanation:
I dont know if this will help but A two force member is a body that has forces (and only forces, no moments) acting on it in only two locations. In order to have a two force member in static equilibrium, the net force at each location must be equal, opposite, and collinear.
Answer:
0.83 m or 5.57 m
Explanation:
Destructive interference will occur when the distances from the speakers differ by 1/2 wavelength.
The length of 1 cycle of 72.4 Hz is ...
λ = v/f = (343 m/s)/(72.4 Hz) ≈ 4.738 m
So, the distance of the listener from speaker B is ...
3.2 m ± (4.738 m)/2 = {0.83 m, 5.57 m} . . . either of these distances
_____
The location could be at additional multiples of 4.738 m, but we think not. The sound intensity drops off with the square of the distance from the speaker, so identical sound waves from the speakers will sound quite different at different distances from the speakers. For best interference, the distances need to be as close to the same as possible. That will be at 3.2 m and 5.57 m.
_____
<em>Comment on the speed of sound</em>
We don't know what speed you are to use for the speed of sound. We have used 343 m/s. Some sources use 340 m/s, which will give a result different by 2 or 3 cm.
Answer:
428.59 N
Explanation:
Buoyant force,
where V is volume, g is gravitational constant and \rho is density
where
is upward force


where
is the density of hippo

Using g as 9.81

Therefore, the upward force=428.59 N
Answer:
Total number of electrons

electrons removed from each sphere

Fraction of electrons transferred is given as

Explanation:
As we know that moles is defined as



so number of atoms of Al in each sphere is given as


Now number of electrons in each atom is given as
atomic number = number of electrons in each atom = 13
total number of electrons in each sphere is


Also we know that force of attraction between them is given as



now we have




Fraction of electrons transferred is given as


Answer:
U = 12,205.5 J
Explanation:
In order to calculate the internal energy of an ideal gas, you take into account the following formula:
(1)
U: internal energy
R: ideal gas constant = 8.135 J(mol.K)
n: number of moles = 10 mol
T: temperature of the gas = 100K
You replace the values of the parameters in the equation (1):

The total internal energy of 10 mol of Oxygen at 100K is 12,205.5 J