Answer:
it would be least to graetest
Explanation:
10-84
Answer:
b = 0.6487 kg / s
Explanation:
In an oscillatory motion, friction is proportional to speed,
fr = - b v
where b is the coefficient of friction
when solving the equation the angular velocity has the form
w² = k / m - (b / 2m)²
In this exercise we are given the angular velocity w = 1Hz, the mass of the body m = 0.1 kg, and the spring constant k = 5 N / m. Therefore we can disperse the coefficient of friction
let's call
w₀² = k / m
w² = w₀² - b² / 4m²
b² = (w₀² -w²) 4 m²
Let's find the angular velocities
w₀² = 5 / 0.1
w₀² = 50
w = 2π f
w = 2π 1
w = 6.2832 rad / s
we subtitute
b² = (50 - 6.2832²) 4 0.1²
b = √ 0.42086
b = 0.6487 kg / s
Answer:
C. Between North and West
Explanation:
Since all have equal masses and the red ball and green ball are moving in south and east direction, the blue ball would most likely be moving between the north and West direction.
Answer:
B = 15μT
Explanation:
In order to calculate the magnitude of the magnetic field generated by the coaxial cable you use the Ampere's law, which is given by:
(1)
μo: magnetic permeability of vacuum = 4π*10^-7 T/A
I: current
r: distance from the wire to the point in which B is calculated
In this case you have two currents with opposite directions, which also generates magnetic opposite magnetic fields. Then, you have (but only for r > radius of the cylindrical conductor) the following equation:
(2)
I1: current of the central wire = 2.00A
I2: current of the cylindrical conductor = 3.50A
r: distance = 2.00 cm = 0.02 m
You replace the values of all parameters in the equation (2), and you use the absolute value because you need the magnitude of B, not its direction.

The agnitude of the magnetic field outside the coaxial cable, at a distance of 2.00cm to the center of the cable is 15μT