answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry [639]
2 years ago
13

You are in a hot-air balloon that, relative to the ground, has a veloc- ity of 6.0 m/s in a direction due east. You see a hawk m

oving directly away from the balloon in a direction due north. The speed of the hawk relative to you is 2.0 m/s. What are the magnitude and direction of the hawk’s velocity relative to the ground? Express the directional angle rel- ative to due east.
Physics
1 answer:
Ann [662]2 years ago
8 0

Answer:

6.32 m/s 18.43° northeast

Explanation:

We express the velocity of hawk as:

v_{Hawk}=v_{balloon}+v_{HawkRelativetoBalloon}=6 x+2 y

We consider positive x towards east and positive y due north. So the magnitude is simply the square root of the square components:

|v_{hawk}|=\sqrt[]{6^2+2^2}=\sqrt{40}≈6.32 m/s

And the angle with respect to the east should be with:

arctan(\frac{2}{6} )=18.43 \°

You might be interested in
A friend climbs an apple tree and drops a 0.22-kg apple from rest to you, standing 3.5 m below. When you catch the apple, you br
ella [17]

Answer: (A) velocity = 2.8m/s

(B) Average force = 1.9536 Newtons

Explanation:

Find detailed explanation in the attached picture

3 0
2 years ago
An inventive child named Nick wants to reach an apple in a tree without climbing the tree. Sitting in a chair connected to a rop
Oduvanchick [21]

UHHH WHAT? I DONT GET THAT AT ALLOW

5 0
2 years ago
A TV satellite broadcasts at a frequency of 5000 MHz, (1 MHz = 1 million Hertz). What is the wavelength of this radiation?
Nitella [24]

Answer:

\lambda=0.06\ m

Explanation:

Given:

  • frequency of the broadcast, f=5000\ MHz=5\times 10^9\ Hz
  • we have the speed of the radiation equal to the speed of light, c=3\times 10^8\ m.s^{-1}

The broadcast waves are the electromagnetic waves but it can travel only upto a hundred kilometers without any loss of information carried by it.

<u>The relation between the frequency and the wavelength:</u>

\lambda=\frac{c}{f}

\lambda=\frac{3\times 10^8}{5\times 10^9}

\lambda=0.06\ m

5 0
2 years ago
Read 2 more answers
Marcus can drive his boat 24 miles down the river in 2 hours but takes 3 hours to return upstream. Find the rate of the boat in
notsponge [240]

Answer:

speed of boat as

v_b = 10 mph

river speed is given as

v_r = 2 mph

Explanation:

When boat is moving down stream then in that case net resultant speed of the boat is given as

since the boat and river is in same direction so we will have

v_1 = v_r + v_b

Now when boat moves upstream then in that case the net speed of the boat is opposite to the speed of the river

so here we have

v_2 = v_b - v_r

as we know when boat is in downstream then in that case it covers 24 miles in 2 hours

v_1 = \frac{24}{2} = 12 mph

also when it moves in upstream then it covers same distance in 3 hours of time

v_2 = \frac{24}{3} = 8 mph

v_b + v_r = 12 mph

v_b - v_r = 8 mph

so we have speed of boat as

v_b = 10 mph

river speed is given as

v_r = 2 mph

8 0
2 years ago
Read 2 more answers
If a rainstorm drops 5 cm of rain over an area of 13 km2 in the period of 3 hours, what is the momentum (in kg · m/s) of the rai
stiks02 [169]

To solve the problem it is necessary to apply the concepts related to Conservation of linear Moment.

The expression that defines the linear momentum is expressed as

P=mv

Where,

m=mass

v= velocity

According to our data we have to

v=10m/s

d=0.05m

A=13*10^6m^2

Volume (V) = A*d = (15*10^6)(0.03) = 3.9*10^5m^3

t = 3hours=10800s

\rho = 1000kg/m^3

From the given data we can calculate the volume of rain for 5 seconds

V' = \frac{V}{t}*\Delta t_{total}

Where,

\Delta t_{total} It is the period of time we want to calculate total rainfall, that is

V' = \frac{3.9*10^5}{10800}*5

V' = 1.805*10^2m^3

Through water density we can now calculate the mass that fell during the 5 seconds:

m' = V'*\rho

m' = 1.805*10^2*1000

m' = 1.805*10^5m^2

Now applying the prevailing equation given we have to

P=m'v

P = (1.805*10^5)(10)

P = 1.805*10^6 Kg.m/s

Therefore the momentum of the rain that falls in five seconds is 1.805*10^6 Kg.m/s

4 0
2 years ago
Other questions:
  • A golf ball is hit by a club. The graph shows the variation with time of the force exerted on the bal
    11·2 answers
  • Sir Marvin decided to improve the destructive power of his cannon by increasing the size of his cannonballs. Sir Seymour kept hi
    13·1 answer
  • Han and Greedo fire their blasters at each other. The blasts are loud, and the intensity of the sound spreads through the cantin
    11·2 answers
  • A piano wire has a length of 81 cm and a mass of 2.0
    6·1 answer
  • A metal sphere of radius 10 cm carries a charge of +2.0 μC uniformly distributed over its surface. What is the magnitude of the
    12·1 answer
  • A (1.25+A) kg bowling ball is hung on a (2.50+B) m long rope. It is then pulled back until the rope makes an angle of (12.0+C)o
    13·1 answer
  • A solid cylinder of mass 12.0 kg and radius 0.250 m is free to rotate without friction around its central axis. If you do 75.0 J
    8·1 answer
  • Sea breezes that occur near the shore are attributed to a difference between land and water with respect to what property?
    15·1 answer
  • Two very large parallel metal plates, separated by 0.20 m, are connected across a 12-V source of potential. An electron is relea
    15·1 answer
  • An empty container is filled with helium to a pressure P at a temperature T. Neon, which has atoms that are 5 times more massive
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!