answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex
2 years ago
9

A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif

orm magnetic field given by B⃗ =(1.05×10−2T)(12i^+3j^−4k^). The ring is positioned initially such that its magnetic moment orientation is given by μ⃗ i=μ(−0.8i^+0.6j^), where μ is the (positive) magnitude of the magnetic moment. (a) Find the initial magnetic torque on the ring. (b) The ring (which is free to rotate around one diameter) is released and turns through an angle of 90.0∘, at which point its magnetic moment orientation is given by μ⃗ f=−μk^. Determine the decrease in potential energy. (c) If the moment of inertia of the ring about a diameter 6.50×10−7kg⋅cm2, determine the angular speed of the ring as it passes through the second position.
Physics
1 answer:
Gwar [14]2 years ago
6 0

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

You might be interested in
A mass m slides down a frictionless ramp and approaches a frictionless loop with radius R. There is a section of the track with
Lana71 [14]

Answer:

   h = 2 R (1 +μ)

Explanation:

This exercise must be solved in parts, first let us know how fast you must reach the curl to stay in the

let's use the mechanical energy conservation agreement

starting point. Lower, just at the curl

       Em₀ = K = ½ m v₁²

final point. Highest point of the curl

        Em_{f} = U = m g y

Find the height y = 2R

      Em₀ = Em_{f}

      ½ m v₁² = m g 2R

       v₁ = √ 4 gR

Any speed greater than this the body remains in the loop.

In the second part we look for the speed that must have when arriving at the part with friction, we use Newton's second law

X axis

    -fr = m a                      (1)

Y Axis  

      N - W = 0

      N = mg

the friction force has the formula

     fr = μ  N

     fr = μ m g

    we substitute 1

    - μ mg = m a

     a = - μ g

having the acceleration, we can use the kinematic relations

    v² = v₀² - 2 a x

    v₀² = v² + 2 a x

the length of this zone is x = 2R

    let's calculate

     v₀ = √ (4 gR + 2 μ g 2R)

     v₀ = √4gR( 1 + μ)

this is the speed so you must reach the area with fricticon

finally have the third part we use energy conservation

starting point. Highest on the ramp without rubbing

     Em₀ = U = m g h

final point. Just before reaching the area with rubbing

     Em_{f} = K = ½ m v₀²

      Em₀ = Em_{f}

     mgh = ½ m 4gR(1 + μ)

       h = ½ 4R (1+ μ)

       h = 2 R (1 +μ)

7 0
2 years ago
Alyssa is carrying a water balloon while running down a field at a speed of 14 m/s. She tosses the water balloon forward toward
Luda [366]
From Alyssa's point of view, the water balloon is at first at rest and then gets thrown with a velocity of 23m/s. Therefore the balloon will have a speed of 23m/s for Alyssa.

At the same time, Naya is watching, and she sees the balloon at the beginning moving at a speed of 14m/s along with Alyssa, and then pushed forward of other 23m/s. Therefore, from her point of view, the balloon will have a speed of 14+23 = 37m/s.

Hence, the correct answer is <span>D) The speed of the balloon is 23 m/s for Alyssa and 37 m/s for Naya. </span>
4 0
2 years ago
Read 2 more answers
A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wal
Studentka2010 [4]

(a) 18.9 m/s

The motion of the stone consists of two independent motions:

- A horizontal motion at constant speed

- A vertical motion with constant acceleration (g=9.8 m/s^2) downward

We can calculate the components of the initial velocity of the stone as it is launched from the ground:

u_x = v_0 cos \theta = (25.0)(cos 41.0^{\circ})=18.9 m/s\\u_y = v_0 sin \theta = (25.0)(sin 41.0^{\circ})=16.4 m/s

The horizontal velocity remains constant, while the vertical velocity changes due to the acceleration along the vertical direction.

When the stone reaches the top of its parabolic path, the vertical velocity has became zero (because it is changing direction): so the speed of the stone is simply equal to the horizontal velocity, therefore

v=18.9 m/s

(b) 22.2 m/s

We can solve this part by analyzing the vertical motion only first. In fact, the vertical velocity at any height h during the motion is given by

v_y^2 - u_y^2 = 2ah (1)

where

u_y = 16.4 m/s is the initial vertical velocity

v_y is the vertical velocity at height h

a=g=-9.8 m/s^2 is the acceleration due to gravity (negative because it is downward)

At the top of the parabolic path, v_y = 0, so we can use the equation to find the maximum height

h_{max} = \frac{-u_y^2}{2a}=\frac{-(16.4)^2}{2(-9.8)}=13.7 m

So, at half of the maximum height,

h = \frac{13.7}{2}=6.9 m

And so we can use again eq(1) to find the vertical velocity at h = 6.9 m:

v_y = \sqrt{u_y^2 + 2ah}=\sqrt{(16.4)^2+2(-9.8)(6.9)}=11.6 m/s

And so, the speed of the stone at half of the maximum height is

v=\sqrt{v_x^2+v_y^2}=\sqrt{18.9^2+11.6^2}=22.2 m/s

(c) 17.4% faster

We said that the speed at the top of the trajectory (part a) is

v_1 = 18.9 m/s

while the speed at half of the maximum height (part b) is

v_2 = 22.2 m/s

So the difference is

\Delta v = v_2 - v_2 = 22.2 - 18.9 = 3.3 m/s

And so, in percentage,

\frac{\Delta v}{v_1} \cdot 100 = \frac{3.3}{18.9}\cdot 100=17.4\%

So, the stone in part (b) is moving 17.4% faster than in part (a).

4 0
2 years ago
Which statements describe vectors? Check all that apply. -Vectors have magnitude only. -Vectors have direction only. -Vectors ha
Natali [406]

Answer:

Vectors have both magnitude and direction

Explanation:

Vectors show how strong the force in because the bigger the arrow, the stronger the force.  Also, it obviously shows direction because its an arrow.

6 0
2 years ago
Read 2 more answers
A parachute works because the canvas of the parachute is acted upon by __________.
Ne4ueva [31]
The question is asking to choose among the following choices that could complete the question about the inertia, base on my research and further investigation, the possible answer would be letter B. Gravity. I hope you are satisfied with my answer and feel free to ask for more 
8 0
2 years ago
Read 2 more answers
Other questions:
  • Astronomers initially had difficulty identifying the emission lines in quasar spectra at optical wavelengths because
    8·1 answer
  • Uranus has an orbital period of 84.07 years. In two or more complete sentences, explain how to calculate the average distance fr
    7·2 answers
  • Question: For an 80-N squeeze on the handle of the pliers, determine the force F applied to the round rod b... For an 80-N squee
    8·1 answer
  • Zamir and Talia raced through a maze. Zamir walked 2 m north, 2 m east, 4 m south, 2 m east, 4 m north, 2 m east, 3 m south, 4 m
    11·2 answers
  • A circular surface with a radius of 0.057 m is exposed to a uniform external electric field of magnitude 1.44 × 104 N/C. The mag
    8·1 answer
  • A thin ring of radius 73 cm carries a positive charge of 610 nC uniformly distributed over it. A point charge q is placed at the
    9·1 answer
  • A roadway for stunt drivers is designed for racecars moving at a speed of 40 m/s. A curved section of the roadway is a circular
    6·1 answer
  • Astronomers determine that a certain square region in interstellar space has an area of approximately 2.4 \times 10^72.4×10 ​7 ​
    7·1 answer
  • Feng and Isaac are riding on a merry-ground. Feng rides on a horse at the outer rim of the circular platform, twice as far from
    10·1 answer
  • a 2.0 kg hoop rolls without slipping on a horizontal surface so that its center proceeds to the right with a constant linear spe
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!