answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ella [17]
2 years ago
15

When Jim and Rob ride bicycles, Jim can only accelerate at three-quarters the acceleration of Rob. Both startfrom rest at the bo

ttom of a long, straight road with constant upward slope. If Rob takes 5.0 minutes to reach thetop, how much earlier should Jim start in order to reach the top at the same time as Rob
Physics
1 answer:
Natali5045456 [20]2 years ago
7 0

Answer:

46.4 s

Explanation:

5 minutes = 60 * 5 = 300 seconds

Let g = 9.8 m/s2. And \theta be the slope of the road, s be the distance of the road, a be the acceleration generated by Rob, 3a/4 is the acceleration generated by Jim .  Both of their motions are subjected to parallel component of the gravitational acceleration gsin\theta

Rob equation of motion can be modeled as s = a_Rt_R^2/2 = a300^2/2 = 45000a[/tex]

Jim equation of motion is s = a_Jt_J^2/2 = (3a/4)t_J^2/2 = 3at_J^2/8

As both of them cover the same distance

45000a = 3at_J^2/8

t_J^2 = 45000*8/3 = 120000

t_J = \sqrt{120000} = 346.4 s

So Jim should start 346.4 – 300 = 46.4 seconds earlier than Rob in other to reach the end at the same time

You might be interested in
An air-track cart with mass m1=0.28kg and initial speed v0=0.75m/s collides with and sticks to a second cart that is at rest ini
arsen [322]
Kinetic energy is calculated through the equation,

   KE = 0.5mv²

At initial conditions,

  m₁:  KE = 0.5(0.28 kg)(0.75 m/s)² = 0.07875 J

  m₂ : KE = 0.5(0.45 kg)(0 m/s)² = 0 J

Due to the momentum balance,

   m₁v₁ + m₂v₂ = (m₁ + m₂)(V)

Substituting the known values,

   (0.29 kg)(0.75 m/s) + (0.43 kg)(0 m/s) = (0.28 kg + 0.43 kg)(V)

   V = 0.2977 m/s

The kinetic energy is,
   KE = (0.5)(0.28 kg + 0.43 kg)(0.2977 m/s)²
   KE = 0.03146 J

The difference between the kinetic energies is 0.0473 J. 
7 0
1 year ago
Richardson pulls a toy 3.0 m across the floor by a string, applying a force of0.50 N. During the first meter, the string is para
Anastasy [175]

Answer:

Total Work done =0.65 joule

Explanation:

Work done is given Mathematically as

W=F *d

Where w=work done in joules

F=applied force

d= distance moved

The work done to move the toy accros the first meter is

W1=0.5*1

W1=0.5joule

The work done to move the toy across the next 2m at an angle of 30° is

.W2=0.5*2cos30

W2=0.5*2*0.154

W2=0.154joule

Hence total work done is

W1+W2=0.5+0.154

Total Work done =0.65 joule

7 0
1 year ago
Alan wrote the following examples of changes in substance.
Yuliya22 [10]
A campfire being lighted and plants converting carbon-dioxide and water into glucose and oxygen are both forms of chemical change.

Therefore, the answer is:

B. Both are examples of chemical change.
5 0
2 years ago
Read 2 more answers
An automobile accelerates from zero to 30 m/s in 6.0 s. The wheels have a diameter of 0.40 m. What is the average angular accele
leva [86]

To solve this problem we will use the concepts related to angular motion equations. Therefore we will have that the angular acceleration will be equivalent to the change in the angular velocity per unit of time.

Later we will use the relationship between linear velocity, radius and angular velocity to find said angular velocity and use it in the mathematical expression of angular acceleration.

The average angular acceleration

\alpha = \frac{\omega_f - \omega_0}{t}

Here

\alpha = Angular acceleration

\omega_{f,i} = Initial and final angular velocity

There is not initial angular velocity,then

\alpha = \frac{\omega_f}{t}

We know that the relation between the tangential velocity with the angular velocity is given by,

v = r\omega

Here,

r = Radius

\omega = Angular velocity,

Rearranging to find the angular velocity

\omega = \frac{v}{r}}

\omega = \frac{30}{0.20} \rightarrow Remember that the radius is half te diameter.

Now replacing this expression at the first equation we have,

\alpha = \frac{30}{0.20*6}

\alpha = 25 rad /s^2

Therefore teh average angular acceleration of each wheel is 25rad/s^2

3 0
1 year ago
Here are the positions at three different times for a bee in flight (a bee's top speed is about 7 m/s). Time 6.6 s 6.9 s 7.2 s P
Ber [7]

Answer:

(A.) (- 4.33, 6.33 , 0); (B.) (- 3.66, 7.5, 0); (C.) average at (A) (- 4.33, 6.33 , 0) ; (D.) (- 0.2165, 0.3165, 0)

Explanation:

Given the following :

Time - - - - - - - 6.6s - - - - - - - - - 6.9s - - - - - 7.2s

Position - (1.8,5.0,0) - (0.5,6.9,0) - - (−0.4,9.5,0)

(a) Between 6.6 s and 6.9 s, what was the bee's average velocity?

Vavg = Distance / time

[(0.5,6.9,0) - (1.8,5.0,0)] / 6.9 - 6.6

Vavg = [(0.5 - 1.8), (6.9 - 5.0), (0 - 0)] / 0.3

Vavg = - 1.3 / 0.3, 1.9/0.3, 0/3

Vavg = (- 4.33, 6.33 , 0)

b) Between 6.6 s and 7.2 s, what was the bee's average velocity?

Vavg = [(−0.4,9.5,0) - (1.8,5.0,0)] / 7.2 - 6.6

Vavg = - 2. 2/0.6, 4.5/0.6, 0/0.6

Vavg = (- 3.66, 7.5, 0)

c.) Of the two averages (- 4.3, 6.3 , 0) is closer to the instantaneous Velocity at 6.6s

D.) (d) Using the best information available, what was the displacement of the bee during the time interval from 6.6 s to 6.65 s?

Displacement = Velocity * time

Vavg between 6.6 to 6.9 ; time = (6.65 - 6.6) = 0.05 s

= (- 4.33, 6.33 , 0) * 0.05

= (- 0.2165, 0.3165, 0)

5 0
2 years ago
Other questions:
  • Find the centripetal force needed by a 1275 kg car to make a turn of radius 40.0 m at a speed of 25.0 km/h
    12·2 answers
  • Imagine you are riding on a yacht in the ocean and traveling at 20 mph. You then hit a golf ball at 100 mph from the deck of the
    6·2 answers
  • A spring is stretched 6 in by a mass that weighs 8 lb. The mass is attached to a dashpot mechanism that has a damping constant o
    12·1 answer
  • A thin copper rod 1.0 m long has a mass of 0.050 kg and is in a magnetic field of 0.10 t. What minimum current in the rod is nee
    15·1 answer
  • A newly discovered planet has a mean radius of 7380 km. A vehicle on the planet\'s surface is moving in the same direction as th
    8·1 answer
  • A physics student shoves a 0.50-kg block from the bottom of a frictionless 30.0° inclined plane. The student performs 4.0 j of w
    8·1 answer
  • A particular cylindrical bucket has a height of 36.0 cm, and the radius of its circular cross-section is 15 cm. The bucket is em
    7·1 answer
  • A meter stick balances at the 50.0-cm mark. If a mass of 50.0 g is placed at the 90.0-cm mark, the stick balances at the 61.3-cm
    13·2 answers
  • Suzy drops a rock from the roof of her house. Mary sees the rock pass her 2.9 m tall window in 0.134 sec. From how high above th
    7·1 answer
  • A harmonic wave travels in the positive x direction at 6 m/s along a taught string. A fixed point on the string oscillates as a
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!