answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sever21 [200]
2 years ago
7

Suppose that an asteroid traveling straight toward the center of the earth were to collide with our planet at the equator and bu

ry itself just below the surface.
Physics
1 answer:
MArishka [77]2 years ago
6 0

Complete Question:

Suppose that an asteroid traveling straight toward the center of the earth were to collide with our planet at the equator and bury itself just below the surface. What would have to be the mass of this asteroid, in terms of the earth’s mass M, for the day to become 25.0% longer than it presently is as a result of the collision? Assume that the asteroid is very small compared to the earth and that the earth is uniform throughout.

Answer:

m = 0.001 M

For the whole process check the following page: https://www.slader.com/discussion/question/suppose-that-an-asteroid-traveling-straight-toward-the-center-of-the-earth-were-to-collide-with-our/

You might be interested in
A wave is propagating from left to right in a medium. The particles in the medium are also vibrating from left to right. What ki
Anna71 [15]
Based on the direction of propagation compared to direction of vibration, waves are classified into:
1- Transverse waves: The direction of propagation of the wave is perpendicular to the direction of vibration of the medium particles.
2- Longitudinal waves: The direction of propagation of the wave is the same as the direction of vibration of the medium particles.

For the question we have here, since the direction of the wave is the same as the direction of vibration of particles, therefore, this wave is a longitudinal wave
6 0
2 years ago
A projectile has an initial horizontal velocity of 15 meters per second and an initial vertical velocity of 25 meters per second
Artyom0805 [142]

Answer:

75 m

Explanation:

The horizontal motion of the projectile is a uniform motion with constant speed, since there are no forces acting along the horizontal direction (if we neglect air resistance), so the horizontal acceleration is zero.

The horizontal component of the velocity of the projectile is

v_x = 15 m/s

and it is constant during the motion;

the total time of flight is

t = 5 s

Therefore, we can apply the formula of the uniform motion to find the horizontal displacement of the projectile:

d= v_x t =(15 m/s)(5 s)=75 m

5 0
2 years ago
A boat is floating in a small pond. the boat then sinks so that it is completely submerged. what happens to the level of the pon
lukranit [14]
A boat is floating in a small pond. the boat then sinks so that it is completely submerged. what happens to the level of the pond?
It increases!
4 0
2 years ago
The gravitational force of a star on an orbiting planet 1 is f1. planet 2, which is three times as massive as planet 1 and orbit
Margaret [11]

Let  us consider two bodies having masses m and m' respectively.

Let they are  separated by a distance of r from each other.

As per the Newtons law of gravitation ,the gravitational force between two bodies is given as -  F = G\frac{mm'}{r^{2} }   where G is the gravitational force constant.

From the above we see that F ∝ mm' and F\alpha \frac{1}{r^{2} }

Let the orbital radius of planet  A is r_{1}  = r and mass of planet is m_{1}.

Let the mass of central star is m .

Hence the gravitational force for planet A  is f_{1} =G \frac{m_{1}*m }{r^{2} }

For planet B the orbital radius  r_{2} =2r_{1} and mass m_{2} = 3 m_{1}

Hence the gravitational force f_{2} =G\frac{m m_{2} }{r^{2} }

                                                 f_{2} =G\frac{m*3m_{1} }{[2r_{1}] ^{2} }

                                                 = \frac{3}{4} G\frac{mm_{1} }{r_{1} ^{2} }

Hence the ratio is  \frac{f_{2} }{f_{1} } = \frac{\frac{3}{4}G mm_{1/r_{1} ^2}  }{Gmm_{1}/r_{1} ^2 }

                                      =\frac{3}{4}     [ ans]


                                                 

                           

3 0
2 years ago
Read 2 more answers
A homeowner is trying to move a stubborn rock from his yard. By using a a metal rod as a lever arm and a fulcrum (or pivot point
finlep [7]

Answer:

1.17894 m

Explanation:

The rock is at one end of the rod which is 0.211 m from the fulcrum

F = Force

d = Distance

L = Length of rod

M = Mass of rock = 325 kg

g = Acceleration due to gravity = 9.81 m/s²

Torque

\tau=F\times d

Torque of man

\tau_m=F(L-d)\\\Rightarrow \tau_m=695(L-0.211)

Torque of rock

\tau_r=Mg\times d\\\Rightarrow \tau=325\times 9.81\times 0.211\\\Rightarrow \tau=672.72075\ Nm

The torques acting on the system is conserved

\tau_m=\tau_r\\\Rightarrow 695(L-0.211)=672.72075\\\Rightarrow L-0.211=\frac{672.72075}{695}\\\Rightarrow L-0.211=0.96794\\\Rightarrow L=0.96794+0.211\\\Rightarrow L=1.17894\ m

The length of the rod is 1.17894 m

5 0
2 years ago
Other questions:
  • A person weighing 0.70 kn rides in an elevator that has an upward acceleration of 1.5 m/s2. what is the magnitude of the normal
    11·1 answer
  • In a car crash, large accelerations of the head can lead to severe injuries or even death. A driver can probably survive an acce
    6·1 answer
  • A newly discovered planet has a mean radius of 7380 km. A vehicle on the planet\'s surface is moving in the same direction as th
    8·1 answer
  • A satellite, orbiting the earth at the equator at an altitude of 400 km, has an antenna that can be modeled as a 1.76-m-long rod
    15·1 answer
  • __________ curves help lessen the effect of the force of the forward motion on your vehicle as it enters the curve.
    12·1 answer
  • "Suppose a horizontal laser beam is reflected off a plane mirror that is perfectly smooth and flat. At first, the mirror is angl
    14·1 answer
  • A small mass m is tied to a string of length L and is whirled in vertical circular motion. The speed of the mass v is such that
    9·1 answer
  • Light rays from stars bend toward smaller angles as they enter Earth's atmosphere. a. Explain why this happens using Snell's law
    8·1 answer
  • An Object moving at a velocity of 30 m/s slows to a stop in 7 seconds. What was its acceleration
    12·1 answer
  • A 2.70 kg cat is sitting on a windowsill. The cat is sleeping peacefully until a dog barks at him. Startled, the cat falls from
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!