answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hoa [83]
2 years ago
8

A system dissipates 12 J of heat into the surroundings; meanwhile, 28 J of work is done on the system. What is the change of the

internal energy ΔEth of the system? A system dissipates 12 of heat into the surroundings; meanwhile, 28 of work is done on the system. What is the change of the internal energy of the system? a. -40 J b. -16 J c. 16 J d. 40 J
Physics
1 answer:
timurjin [86]2 years ago
6 0

Answer:

option C

Explanation:

given,

energy dissipated by the system to the surrounding = 12 J

Work done on the system = 28 J

change in internal energy of the system

Δ U = Q - W

system losses energy = - 12 J

work done = -28 J

Δ U = Q - W

Δ U = -12 -(-28)

Δ U = 16 J

hence, the correct answer is option C

You might be interested in
Two blocks, 1 and 2, are connected by a rope R1 of negligible mass. A second rope R2, also of negligible mass, is tied to block
alekssr [168]

Answer:

Explanation:

Given

Two block are connected by rope R_1

R_2 rope is attached to block 2

suppose F_2 is a force applied to Rope R_2

Applied force F_2=Tension in Rope 2

F_2=(m_1+m_2)a---1

where a=acceleration of system

Tension in rope R_1 is denoted by F_1

F_1=m_1a---2

divide 1 and 2 we get

\frac{F_2}{F_1}=\frac{(m_1+m_2)a}{m_1a}

also m_1=2.11\cdot m_2

\frac{F_2}{F_1}=\frac{2.11m_2+m_2}{2.11m_2}

\frac{F_2}{F_1}=\frac{3.11}{2.11}

\frac{F_1}{F_2}=\frac{2.11}{3.11}

               

3 0
2 years ago
A 2 kg stone moves with a speed of 1 m/s. A second 2 kg stone is moving twice as fast. Compare their kinetic energies.
alekssr [168]
D
is the answer
Well it should be
5 0
2 years ago
Read 2 more answers
89. An electron is moving in a straight line with a velocity of 4.0×105 m/s. It enters a region 5.0 cm long where it undergoes a
ddd [48]

Explanation:

Given that,

Initial speed of the electron, u=4\times 10^5\ m/s

Distance, s = 5 cm = 0.05 cm

Acceleration of the electron, a=6\times 10^{12}\ m/s^2  

(a) Let v is the electron's velocity when it emerges from this region. It can be calculated as :

v^2=u^2+2as

v^2=(4\times 10^5)^2+2\times 6\times 10^{12}\times 0.05

v = 871779.788 m/s

or

v=8.71\times 10^5\ m/s

(b) Let t is the time for which the electron take to cross the region. It can be calculated as:

t=\dfrac{v-u}{a}

t=\dfrac{8.71\times 10^5-4\times 10^5}{6\times 10^{12}}

t=7.85\times 10^{-8}\ s

Hence, this is the required solution.

4 0
2 years ago
 If the gauge pressure of a gas is 114 kPa, what is the absolute pressure?
Anastasy [175]

Answer:

D. 214 kPa

Explanation:

The absolute pressure is given by:

p = p_a + p_g

where

p is the absolute pressure

p_a \sim 100 kPa is the atmospheric pressure

p_g is the gauge pressure

In this problem, we have

p_g = 114 kPa

So, the atmospheric pressure is

p = 100 kPa + 114 kPa = 214 kPa

4 0
2 years ago
Read 2 more answers
A fireboat is to fight fires at coastal areas by drawing seawater with a density of 1030 kg/m3 through a 10-cm-diameter pipe at
GaryK [48]

Answer:

50.93 m/s

199.5 kW

Explanation:

From the question, the nozzle exit diameter = 5 cm, Radius= diameter/2= 5cm/2= 2.5cm. we can convert it to metre for unit consistency= (2.5×0.01)=

0.025m

We can calculate the The cross sectional area of the nozzle as

A= πr^2

A= π ×0.025^2

= 1.9635 ×10^- ³ m²

From the question, the water is moving through the pipe at a rate of 0.1 m /s , then for the water to move through it at a seconds, it must move at

(0.1 / 1.9635 ×10^- ³ m²)

= 50.93 m/s

During the Operation of the pump, the Dynamic energy of the water= potential energy provided there is no loss during the Operation

mgh = 1/2mv²

We can make "h" subject of the formula, which is the height of required head of water

h = (1/2mv²)/mg

h= v² / 2g

h = 50.93² / (2 ×9.81)

h = 132.21m

From the question;

The total irreversible head loss of the system = 3 m,

the given position of nozzle = 3 m

the total head the pump needed=(The total irreversible head loss of the system + the position of the nozzle + required head of water )

=(3 + 3 + 132.21m)

=138.21m

mass of water pumped in a seconds can be calculated since we know that mass is a product of volume and density

Volume= 0.1m³

Density of sea water=1030 kg/m

(0.1 m^3× 1030)

= 103kg

We can calculate the Potential enegry, which is = mgh

= (103 ×9.81 × 138.21)

= 139651.5 Watts

= 139.65kW

To determine required shaft power input to the pump and the water discharge velocity

Energy= efficiency × power

But we are given efficiency of 70 percent, then

139651.5 Watts = 0.7P

=199502.18 Watts

P=199.5 kW

Therefore, the required shaft power input to the pump and the water discharge velocity is 199.5 kW

5 0
1 year ago
Other questions:
  • A cave explorer travels 3.0 m eastward, then 2.5 m northward, and finally 15.0 m westward. use the graphical method to find the
    8·2 answers
  • a force of 25.0 newtons is applied so as to move a 5.0 kg mass a distance of 20.0 meters. How much work was done? with work plea
    6·1 answer
  • Which one of the following statements concerning spherical mirrors is correct?A. Only a convex mirror can produce an enlarged im
    14·1 answer
  • A wedge with an inclination of angle θ rests next to a wall. A block of mass m is sliding down the plane. There is no friction b
    11·1 answer
  • You analyze a sample of a meteorite that landed on Earth and find that 15/16 of a certain type of radioactive atoms have decayed
    11·1 answer
  • You are in a rocket moving away from Earth at one-third the speed of light relative to Earth. A friend is on Earth, and an astro
    5·1 answer
  • The submarine sends out a sound wave that returns in 1.08 seconds. If this sound wave has a frequency of 2.50 × 106 Hz and a wav
    5·1 answer
  • Calculate the length of a simple pendulum that oscillates with a frequency of 0.4Hz g=10m/s2 , ^=3.142
    12·1 answer
  • Read the claim about caffeine. Caffeine improves mental alertness and motor coordination. A university research study was conduc
    6·2 answers
  • Vinny is on a motorcycle at rest, 200 m away from a ramp that jumps over a gully. Calculate the minimum constant acceleration Vi
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!