B.
The child is too old to be gaining something from the screen time.
Answer:
a. The electric field lines are linear and perpendicular to the plates inside a parallel-plate capacitor, and always from positive plate to the negative plate. If a positive charge is released near the positive plate, then<em> it will follow a linear path towards the negative plate under the influence of electrostatic force, F = Eq</em>, where q is the charge of the particle. The electric field inside a parallel plate capacitor is constant and equal to
This can be calculated by Gauss' Law.
A positive charge always follow the electric field lines when released. Another approach is that the positive plate repels the positive charge and negative plate attracts the positive charge. Therefore, the positive charge follows a path towards the negative charge.
b. The particle moves from the higher potential to the lower potential. <em>The direction of motion is the same as the direction of the force that moves the particle, so the work done on the particle by that force is positive.</em>
Answer:
The centripetal force acting on the child is 39400.56 N.
Explanation:
Given:
Mass of the child is, 
Radius of the barrel is, 
Number of revolutions are, 
Time taken for 10 revolutions is, 
Therefore, the time period of the child is given as:

Now, angular velocity is related to time period as:

Now, centripetal force acting on the child is given as:

Therefore, the centripetal force acting on the child is 39400.56 N.
Answer:
1)

2)

Explanation:
<u>Projectile Motion</u>
When an object is launched near the Earth's surface forming an angle
with the horizontal plane, it describes a well-known path called a parabola. The only force acting (neglecting the effects of the wind) is the gravity, which acts on the vertical axis.
The heigh of an object can be computed as

Where
is the initial height above the ground level,
is the vertical component of the initial velocity and t is the time
The y-component of the speed is

1) We'll find the vertical component of the initial speed since we have not enough data to compute the magnitude of 
The object will reach the maximum height when
. It allows us to compute the time to reach that point

Solving for 

Thus, the maximum heigh is

We know this value is 8 meters

Solving for 

Replacing the known values


2) We know at t=1.505 sec the ball is above Julie's head, we can compute



