answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ket [755]
2 years ago
8

The distance between two slits is 1.50 *10-5 m. A beam of coherent light of wavelength 600 nm illuminates these slits, and the d

istance between the slit and the screen is 2.00 m. What is the distance on the screen between the central bright fringe and the fourth-order bright fringe?
Physics
1 answer:
Fed [463]2 years ago
8 0

Answer: y = 2.4×10^-6m or y= 2.4μm

Explanation: The formulae for the distance between the central bright fringe to any other fringe in pattern is given as

y = R×mλ/d

Where y = distance between nth fringe and Central bright spot fringe.

m = position of fringe = 4

λ = wavelength of light= 600nm = 600×10^-9 m

d = distance between slits = 1.50×10^-5m

R = distance between slit and screen = 2m

y = 2 × 4 × 600×10^-9/2

y = 4800×10^-9/2

y = 2400 × 10^-9

y = 2.4×10^-6m or y= 2.4μm

You might be interested in
A sister spins her brother in a circle of radius R at angular speed wi. Then the sister decreases her angular speed
Igoryamba

Answer:

The change in the centripetal acceleration of the brother,

                               Δa = V₂²/R - V₁²/R

Explanation:

Given data,

A sister spins her brother in a circle of radius, R

The angular velocity of the brother, ω₁ = V₁/R

The angular velocity of the brother, ω₂ = V₂/R

The centripetal acceleration is given by the relation

                                 a = V²/R

Therefore change in the centripetal acceleration of the brother,

                              Δa = V₂²/R - V₁²/R                                    

6 0
2 years ago
Fields of Point Charges Two point charges are fixed in the x-y plane. At the origin is q1 = -6.00 nC . and at a point on the x-a
My name is Ann [436]

Answer:

Part A) Electric fields at the point due to q₁ and q₂:

E₁ = 33.75*10³ N/C (-j) , E₂= ( 6.48 (-i) + 8.64 (+j) )*10³ N/C

Part B) Net electric field at P (Ep)

Ep=   (6.48*10³ (-i)+25.11 10³ (-j) )N/C

Explanation:

Conceptual analysis

The electric field at a point P due to a point charge is calculated as follows:

E = k*q/d²

E: Electric field in N/C

q: charge in Newtons (N)

k: electric constant in N*m²/C²

d: distance from charge q to point P in meters (m)

Equivalence

1nC= 10⁻⁹C

1cm= 10⁻²m

Data

k= 9*10⁹ N*m²/C²

q₁ = -6.00 nC = -6 *10⁻⁹C

q₂ = +3.00 nC = +3*10⁻⁹C

d₁ = 4cm = 4 *10⁻²m

d_{2} =\sqrt{(4*10^{-2})^{2}+((3*10^{-2})^{2} }

d₂ = 5 *10⁻²m

Part A) Calculation of the electric fields at the point due to q₁ and q₂

Look at the attached graphic:

E₁: Electric Field at point  P(0,4) cm due to charge q₁. As the charge q₁ is negative (q₁-), the field enters the charge

E₂: Electric Field at point  P(0,4) cm  due to charge q₂. As the charge q₂ is positive (q₂+) ,the field leaves the charge

E₁ = k*q₁/d₁² = 9*10⁹ *6 *10⁻⁹/ (4 *10⁻²)² = 33.75*10³ N/C

E₂ = k*q₂/d₂²= 9*10⁹ *3*10⁻⁹/(5 *10⁻²)² =  10.8*10³ N/C

E₁ = 33.75*10³ N/C (-j)

E₂x=E₂cosβ = 10.8*(3/5) = 6.48*10³ N/C

E₂y=E₂sinβ = 10.8*(4/5) =  8.64*10³ N/C

E₂= ( 6.48 (-i) + 8.64 (+j) )*10³ N/C

Part B) Calculation of the net electric field at P (Ep)

The electric field at a point P due to several point charges is the vector sum of the electric field due to individual charges.

Ep=Epx (i) + Epy (j)

Epx= E₂x= 6.48*10³ N/C (-i)

Epy= E₁y+E₂y= (33.75*10³ (-j) + 8.64*10³ (+j) ) N/C=25.11 10³ (-j) N/C

Ep=   (6.48*10³ (-i)+25.11 10³ (-j) )N/C

Ep=   (6.48*10³ (-i)+25.11 10³ (-j) )N/C

3 0
2 years ago
Батискаф витримує тиск 60 МПа. Чи можна провести дослідження
Elanso [62]

1) Yes

2) 6.34\cdot 10^9 N

Explanation:

1)

To solve this part, we have to calculate the pressure at the depth of the batyscaphe, and compare it with the maximum pressure that it can withstand.

The pressure exerted by a column of fluid of height h is:

p=p_0+\rho g h

where

p_0 = 101,300 Pa is the atmospheric pressure

\rho is the fluid density

g=10 m/s^2 is the acceleration due to gravity

h is the height of the column of fluid

Here we have:

\rho=1030 kg/m^3 is the sea water density

h = 5440 m is the depth at which the bathyscaphe is located

Therefore, the pressure on it is

p=101,300+(1030)(10)(5440)=56.1\cdot 10^6 Pa = 56.1 MPa

Since the maximum pressure it can withstand is 60 MPa, then yes, the bathyscaphe can withstand it.

2)

Here we want to find the force exerted on the bathyscaphe.

The relationship between force and pressure on a surface is:

p=\frac{F}{A}

where

p is hte pressure

F is the force

A is the area of the surface

Here we have:

p=56.1\cdot 10^6 Pa is the pressure exerted

The bathyscaphe has a spherical surface of radius

r = 3 m

So its surface is:

A=4\pi r^2

Therefore, we can find the force exerted on it by re-arranging the previous equation:

F=pA=4\pi pr^2 = 4\pi (56.1\cdot 10^6)(3)^2=6.34\cdot 10^9 N

6 0
2 years ago
An airplane weighing 5000 lb is flying at standard sea level with a velocity of 200 mi/h. At this velocity the L/D ratio is a ma
saul85 [17]

Answer:

98.15 lb

Explanation:

weight of plane (W) = 5,000 lb

velocity (v) = 200 m/h =200 x 88/60 = 293.3 ft/s

wing area (A) = 200 ft^{2}

aspect ratio (AR) = 8.5

Oswald efficiency factor (E) = 0.93

density of air (ρ) = 1.225 kg/m^{3} = 0.002377 slugs/ft^{3}

Drag = 0.5 x ρ x v^{2} x A x Cd

we need to get the drag coefficient (Cd) before we can solve for the drag

Drag coefficient (Cd) = induced drag coefficient (Cdi) + drag coefficient at zero lift (Cdo)

where

  • induced drag coefficient (Cdi) = \frac{Cl^{2} }{n.E.AR} (take note that π is shown as n and ρ is shown as p)    

        where lift coefficient (Cl)= \frac{2W}{pAv^{2} }=\frac{2x5000}{0.002377x200x293.3^{2} } = 0.245

        therefore

       induced drag coefficient (Cdi) = \frac{Cl^{2} }{n.E.AR} = \frac{0.245^{2} }{3.14x0.93x8.5} = 0.0024

  • since the airplane flies at maximum L/D ratio, minimum lift is required and hence induced drag coefficient (Cdi) = drag coefficient at zero lift (Cdo)
  • Cd = 0.0024 + 0.0024 = 0.0048

Now that we have the coefficient of drag (Cd) we can substitute it into the formula for drag.        

 Drag = 0.5 x ρ x v^{2} x A x Cd

Drag = 0.5 x 0.002377 x (293.3 x 293.3) x 200 x 0.0048 = 98.15 lb

8 0
2 years ago
Each plate of a parallel-plate capacator is a square with side length r, and the plates are separated by a distance d. The capac
SVETLANKA909090 [29]

Answer:

Explanation:

Before the dialectic was inserted the capacitor is Co

When the slab is inserted,

The capacitor becomes

C=kCo

The charge Q is given as

Q=CV

Then, when C=Co

Qo=CoV

Then, when C=kCo

Q=kCoV

Then, the change in charges is given as

Q-Qo= kCoV - CoV

∆Q= kCoV - CoV

Current is given as

I=dQ/dt

I= (kCoV - CoV) / dt

I=Co(kV-V)/dt

Note Co is the value capacitor

So, Capacitance of parallel plates capacitor is given as

Co=εoA/d

Then,

I=εoA(kV-V)/d•dt

I=VεoA(k-1)/d•dt

Where A=πr²

I = V•εo•πr²•(k-1) / d•dt

This is the required expression for current is in the required term

6 0
2 years ago
Other questions:
  • Un ladrillo se le imparte una velocidad inicial de 6m/s en su trayectoria hacia abajo. ¿cual sera su velocidad final despues de
    9·1 answer
  • The deepest point of the pacific ocean is 11,033 m, in the mariana trench. what is the gauge pressure in the water at that point
    6·1 answer
  • Assume that you stay on the Earth's surface. What is the ratio of the sun's gravitational force on you to the earth's gravitatio
    9·1 answer
  • A firecracker breaks up into several pieces, one of which has a mass of 200 g and flies off along the x-axis with a speed of 82.
    14·1 answer
  • An object that weighs 2.450 N is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period o
    8·1 answer
  • An aluminum rod and a nickel rod are both 5.00 m long at 20.0 degree Celsius. The temperature of each is raised to 70.0 degrees
    7·1 answer
  • The air in a 6.00 L tank has a pressure of 2.00 atm. What is the final pressure, in atmospheres, when the air is placed in tanks
    9·1 answer
  • Global Precipitation Measurement (GPM) is a tool scientists use to forecast weather. Which statements describe GPM? Select three
    7·1 answer
  • Starting at t = 0 a net external force in the +x-direction is applied to an object that has mass 5.00 kg. A graph of the force a
    7·1 answer
  • Calculate the force of gravity between two objects of masses 1300 kg and 7800 kg, which are 0.23 m apart.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!