Answer:
A) If one travels around a closed path adding the voltages for which one enters the negative reference and subtracting the voltages for which one enters the positive reference, the total is zero.
Explanation:
Kirchhoff's voltage law deals with the conservation of energy when the current flows in a closed-loop path.
It states that the algebraic sum of the voltages around any closed loop in a circuit is always zero.
In other words, the algebraic sum of all the potential differences through a loop must be equal to zero.
Answer:
Fa=774 N
Fb=346 N
Explanation:
We will solve this problem by equating forces on each axis.
- On x-axis let forces in positive x-direction be positive and forces in negative x-direction be negative
- On y-axis let forces in positive y-direction be positive and forces in negative y-direction be negative
While towing we know that car is mot moving in y-direction so net force in y-axis must be zero
⇒∑Fy=0
⇒
⇒
⇒
Given that resultant force on car is 950N in positive x-direction
⇒∑Fx=950
⇒
⇒
⇒
⇒
⇒
⇒ 
⇒


Therefore approximately, Fa=774 N and Fb=346 N
Answer:
a) When its length is 23 cm, the elastic potential energy of the spring is
0.18 J
b) When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J
Explanation:
Hi there!
a) The elastic potential energy (EPE) is calculated using the following equation:
EPE = 1/2 · k · x²
Where:
k = spring constant.
x = stretched lenght.
Let´s calculate the elastic potential energy of the spring when it is stretched 3 cm (0.03 m).
First, let´s convert the spring constant units into N/m:
4 N/cm · 100 cm/m = 400 N/m
EPE = 1/2 · 400 N/m · (0.03 m)²
EPE = 0.18 J
When its length is 23 cm, the elastic potential energy of the spring is 0.18 J
b) Now let´s calculate the elastic potential energy when the spring is stretched 0.06 m:
EPE = 1/2 · 400 N/m · (0.06 m)²
EPE = 0.72 J
When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J
Answer:
The magnets need to be placed with red closest to blue.
Opposite poles attract.
The magnets will be attracted to each other with enough force to stick together.
Explanation:
Answer:
choosing a material that will show warning before it fails
Explanation:
According to my research on different architectural engineering techniques, I can say that based on the information provided within the question this is an example of choosing a material that will show warning before it fails. By choosing aluminum he can detect certain failures a long time before it actually happens since aluminum shows signs of wear and tear and doesn't just break immediately.
I hope this answered your question. If you have any more questions feel free to ask away at Brainly.