answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kiruha [24]
2 years ago
11

Find the current that flows in a silicon bar of 10-μm length having a 5-μm × 4-μm cross-section and having free-electron and hol

e densities of 104/cm3 and 1016/cm3, respectively, when a 1V is applied end-to-end. Use μn = 1200 cm2/V·s and μp = 500 cm2/V·s.
Physics
1 answer:
klasskru [66]2 years ago
6 0

The current flowing in silicon bar is 2.02 \times 10^-12 A.

<u>Explanation:</u>

Length of silicon bar, l = 10 μm = 0.001 cm

Free electron density, Ne = 104 cm^3

Hole density, Nh = 1016 cm^3

μn = 1200 cm^2 / V s

μр = 500 cm^2 / V s

The total current flowing in the bar is the sum of the drift current due to the hole and the electrons.

J = Je + Jh

J = n qE μn + p qE μp

where, n and p are electron and hole densities.

J = Eq (n μn + p μp)

we know that E = V / l

So, J = (V / l) q (n μn + p μp)

     J = (1.6 \times 10^-19) / 0.001 (104 \times 1200 + 1016 \times 500)

     J = 1012480 \times 10^-16 A / m^2.

or

J = 1.01 \times 10^-9 A / m^2

Current, I = JA

A is the area of bar, A = 20 μm = 0.002 cm

I = 1.01 \times 10^-9 \times 0.002 = 2.02 \times 10^-12

So, the current flowing in silicon bar is 2.02 \times 10^-12 A.  

You might be interested in
Identical cannon balls are fired with the same force, one each from four cannons having respective bore lengths of 1.0 meter, 2.
Gala2k [10]

To answer this question, we must bear in mind the following considerations that are mentioned in the statement:

The cannon balls are identical and shoot with the same force

The force acting on the cannonball increases with the length of the hole.

You want to know which cannon will have the least momentum on the ball.

Then, the force on the ball increases as the barrel length increases and the impulse depends on the magnitude of the force, then, the cannon that will have the minimum impulse will be the 1 meter one.

The answer is option B.


4 0
2 years ago
The free body diagram represents Silly Sally hanging from a trapeze bar. Sally weighs 660 Newtons. What is the force in each of
MrRissso [65]

the force in each of the chains holding the trapeze bar is D. 330 N

Her weight has to be divided evenly so, divide 660/2= 330 N

5 0
2 years ago
A uniform disk has a mass of 3.7 kg and a radius of 0.40 m. The disk is mounted on frictionless bearings and is used as a turnta
yuradex [85]

Answer:

1.25 kgm²/sec

Explanation:

Disk inertia, Jd =

Jd = 1/2 * 3.7 * 0.40² = 0.2960 kgm²

Disk angular speed =

ωd = 0.1047 * 30 = 3.1416 rad/sec

Hollow cylinder inertia =

Jc = 3.7 * 0.40² = 0.592 kgm²

Initial Kinetic Energy of the disk

Ekd = 1/2 * Jd * ωd²

Ekd = 0.148 * 9.87

Ekd = 1.4607 joule

Ekd = (Jc + 1/2*Jd) * ω²

Final angular speed =

ω² = Ekd/(Jc+1/2*Jd)

ω² = 1.4607/(0.592+0.148)

ω² = 1.4607/0.74

ω² = 1.974

ω = √1.974

ω = 1.405 rad/sec

Final angular momentum =

L = (Jd+Jc) * ω

L = 0.888 * 1.405

L = 1.25 kgm²/sec

5 0
2 years ago
A sailboat starts from rest and accelerates at a rate of 0.21 m/s^2 over a distance of 280 m. find the magnitude of the boat's f
sasho [114]

We use the kinematic equations,

v=u+at                                          (A)

S= ut + \frac{1}{2} at^2                  (B)

Here, u is initial velocity, v is final velocity, a is acceleration and t is time.

Given,  u=0, a=0.21 \ m/s^2 and s= 280 m.

Substituting these values in equation (B), we get

280 \ m = 0 +\frac{1}{2} (0.21 m/s^2) t^2 \\\\ t^2 = \frac{280 \times 2}{0.21 } \\\\ t= 51.63 \ s.

Therefore from equation (A),

v = 0 + (0.21) \times (51.63 s)= 10.84 \ m/s

Thus, the magnitude of the boat's final velocity is 10.84 m/s and the time taken by boat to travel the distance 280 m is 51.63 s



8 0
2 years ago
If electromagnetic radiation a has a lower frequency than electromagnetic radiation b the wavelength of a is
Jobisdone [24]
Inversely proportional to its frequency. If electromagnetic radiation A has a lower frequency than electromagnetic B, then compared to B, the wavelength of A is...? - equal - shorter - longer - exactly half the length of
5 0
2 years ago
Other questions:
  • The intensity of sunlight hitting the surface of the earth on a cloudy day is about 0.50 kw/m2 assuming your pupil can close dow
    10·1 answer
  • Which of the following solid fuels has the highest heating value?
    13·2 answers
  • A periodic wave travels from one medium to another. Which pair of variables are likely to change in the process? A. velocity and
    9·1 answer
  • Step 8: Observe How Changes in the Speed of the Bottle Affect Beanbag Height
    7·2 answers
  • 2. The water is then heated to its boiling point. Calculate the specific latent heat of
    9·1 answer
  • Which is not a characteristic of an ideal fluid?
    9·1 answer
  • A water wave traveling in a straight line on a lake is described by the equation:y(x,t)=(2.75cm)cos(0.410rad/cm x+6.20rad/s t)Wh
    11·1 answer
  • Which of the following best describes a set of conditions under which archaeoastronomers would conclude that an ancient structur
    13·1 answer
  • A proton is released such that it has an initial speed of 4.0 · 105 m/s from left to right across the page. A magnetic field of
    15·1 answer
  • It took a squirrel 0.50\,\text s0.50s0, point, 50, start text, s, end text to run 5.0\,\text m5.0m5, point, 0, start text, m, en
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!