answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kiruha [24]
2 years ago
11

Find the current that flows in a silicon bar of 10-μm length having a 5-μm × 4-μm cross-section and having free-electron and hol

e densities of 104/cm3 and 1016/cm3, respectively, when a 1V is applied end-to-end. Use μn = 1200 cm2/V·s and μp = 500 cm2/V·s.
Physics
1 answer:
klasskru [66]2 years ago
6 0

The current flowing in silicon bar is 2.02 \times 10^-12 A.

<u>Explanation:</u>

Length of silicon bar, l = 10 μm = 0.001 cm

Free electron density, Ne = 104 cm^3

Hole density, Nh = 1016 cm^3

μn = 1200 cm^2 / V s

μр = 500 cm^2 / V s

The total current flowing in the bar is the sum of the drift current due to the hole and the electrons.

J = Je + Jh

J = n qE μn + p qE μp

where, n and p are electron and hole densities.

J = Eq (n μn + p μp)

we know that E = V / l

So, J = (V / l) q (n μn + p μp)

     J = (1.6 \times 10^-19) / 0.001 (104 \times 1200 + 1016 \times 500)

     J = 1012480 \times 10^-16 A / m^2.

or

J = 1.01 \times 10^-9 A / m^2

Current, I = JA

A is the area of bar, A = 20 μm = 0.002 cm

I = 1.01 \times 10^-9 \times 0.002 = 2.02 \times 10^-12

So, the current flowing in silicon bar is 2.02 \times 10^-12 A.  

You might be interested in
100-ft-long horizontal pipeline transporting benzene develops a leak 43 ft from the high-pressure end. The diameter of the leak
Amanda [17]

Answer:

Explanation:

The mass flow rate of benzene from the leak in the pipeline containing benzene is:

Q_m=AC_o\sqrt{2\rho g_cP_g}

Here, Q_m is the mass flow rate through the leak of the pipeline. A is the area of the hole, C_o is the discharge rate, \rho is the fluid density, g_c is the gravitational constant and P_g is the constant gauge pressure within the process unit.

The diametre of the leak (d) is 0.1 in. Convert from in to ft.

d=(0.1 in)(\frac{1ft}{12in})\\=8.33\times 10^{-3}ft

Calculate the area (A) of the hole. The area of the hole is.

A=\frac{\pi d^2}{4}

Substitute 3.14 for \pi and 8.33\times 10^{-3}ft for d and calculate A.

A=\frac{\pi d^2}{4}\\\\\frac{(3.14)(8.33\times 10^{-3})^2}{4}\\\\5.45\times 10^{-5}ft^2

The specific gravity of benzene is 0.8794. Specific gravity is the ratio of th density of a substance to the density of a reference substance.

Specific gravity of benzene = density of benzenee/denity of reference substance

Rewrite the expression in terms of density of benzene.

Density of benzene = specific gravity of benzene x density of reference substance

Take the reference substance as water. Density of water is 62.4\frac{Ib_m}{ft^3}. Calculate density of benzene.

Density of benzene = specific gravity of benzene x density of reference substance

=(0.8794)(62.4\frac{Ib_m}{ft^3})\\\\54.9\frac{Ib_m}{ft^3}

Calculate the pressure at the point of leak. The pressure is the average of the pressure of the high and low pressure end. Write the expression to calculate the average pressure.

Upstream x distance from upstream pressure end

P_g=+DOWNSTREAM PRESSURE X DISTANCE FROM THE DOWNSTREAM PRESSURE END/ TOTAL LENGTH OF THE HORIZONTAL PIPELINE

Calculate the distance from the downstream pressure end. The distance from upstream pressure end is 43 ft. Total of the pipe is 100 ft.

Distance from the downstream pressure end = Total length of the pipe - Distance from the upstream pressure end

The distance from upstream pressure end is 43 ft. Total length of the pipe is 100 ft. Substitute the values in the equation.

Distance from the downstream pressure end = Total length of the pipe - Distance from the upstream pressure end

= 100ft - 43ft = 57 ft

Substitute 50 psig for upstream, 43 ft fr distance from the upstream pressure end, 40 psig for downstream pressure, 57 ft for distance from the downstream pressure end, and 100 ft for the total length of the horizontal pipeline and calculate P_g.

Upstream x distance from upstream pressure end

P_g=+DOWNSTREAM PRESSURE X DISTANCE FROM THE DOWNSTREAM PRESSURE END/ TOTAL LENGTH OF THE HORIZONTAL PIPELINE

=\frac{(50psig\times 43ft)+(40psig \times 57ft)}{100ft}\\\\=44.3psig

Convert the pressure from psig to Ib_f/ft^2

P_g=(44.3psig)(\frac{1\frac{Ib_f}{ft^2}}{1psig})(144\frac{in^2}{ft^2})\\\\=6,379.2\frac{Ib_f}{ft^2}

The leak is like a sharp orifice. Take the value of the discharge coefficient as 0.61.

Substitute 5.45\times 10^{-5}ft^2 for A. 0.61 for C_o, 54.9\frac{Ib_m}{ft^3} for \rho, 32.17\frac{ft.Ib_m}{Ib_f.s^2} for g_c, and 6,379.2\frac{Ib_f}{ft^2} for P_g and calculate Q_m

Q_m=AC_o\sqrt{2\rho g_cP_g}\\\\=(5.45\times 10^{-5}ft^2)(0.61)\sqrt{2(54.9\frac{Ib_m}{ft^3})(32.17\frac{ft.Ib_m}{Ib_f.s^2})(6,379.2\frac{Ib_f}{ft^2})}\\\\(3.3245\times 10^{-5}ft^2)\sqrt{22,533,031.21\frac{Ib^2_m}{ft^4.s^2}}\\\\=0.158\frac{Ib_m}{s}

The mass flow rate of benzene through the leak in the pipeline is 0.158\frac{Ib_m}{s}

8 0
2 years ago
Which statement is true?
iogann1982 [59]
B 
Think of inertia of getting into a car accident without a seat belt although the car stops you will not you would likely fly out the window
7 0
1 year ago
Read 2 more answers
Sharks are generally negatively buoyant; the upward buoyant force is less than the weight force. This is one reason sharks tend
Tresset [83]

Answer:

8.67807 N

34.7123 N

Explanation:

m = Mass of shark = 92 kg

\rho_{se} = Density of seawater = 1030 kg/m³

\rho_{f} = Density of freshwater = 1000 kg/m³

\rho_{sh} = Density of shark = 1040 kg/m³

g = Acceleration due to gravity = 9.81 m/s²

Net force on the fin is (seawater)

F_n=mg-V_s\rho_{se}g\\\Rightarrow F_n=mg-\frac{m}{\rho_{sh}}\rho_{se}g\\\Rightarrow F_n=92\times 9.81-\frac{92}{1040}\times 1030\times 9.81\\\Rightarrow F_n=8.67807\ N

The lift force required in seawater is 8.67807 N

Net force on the fin is (freshwater)

F_n=mg-V_s\rho_{f}g\\\Rightarrow F_n=mg-\frac{m}{\rho_{sh}}\rho_{f}g\\\Rightarrow F_n=92\times 9.81-\frac{92}{1040}\times 1000\times 9.81\\\Rightarrow F_n=34.7123\ N

The lift force required in a river is 34.7123 N

6 0
2 years ago
Two billiard balls of equal mass are traveling straight toward each other with the same speed. They meet head-on in an elastic c
Rus_ich [418]

Answer:

0 kg m/s before and after collision

Explanation:

Let m, v be the mass and speed of the 2 balls, respectively, before the collision. Since they have the same mass and same speed but in opposite direction, the total momentum of the system would be:

P = mv - mv = 0 kg m/s

As the collision is elastic. The total momentum after the collision is the same as the total momentum before the collision, which is 0.

5 0
2 years ago
8.4-1 Consider a magnetic field probe consisting of a flat circular loop of wire with radius 10 cm. The probe’s terminals corres
Vlad1618 [11]

Answer:

B_o = 1.013μT

Explanation:

To find B_o you take into account the formula for the emf:

\epsilon=-\frac{d\Phi_b}{dt}=-\frac{dBAcos\theta}{dt}=-Acos\theta\frac{dB}{dt}

where you used that A (area of the loop) is constant, an also the angle between the direction of B and the normal to A.

By applying the derivative you obtain:

\epsilon=-Acos\theta (2\pi f) B_ocos(2\pi f t+ \alpha)

when the emf is maximum the angle between B and the normal to A is zero, that is, cosθ = 1 or -1. Furthermore the cos function is 1 or -1. Hence:

\epsilon=2\pi fAB_o=2\pi (100*10^3Hz)(\pi (0.1m)^2)B_o=19739.20Hzm^2B_o\\\\B_o=\frac{20*10^{-3}V}{19739.20Hzm^2}=1.013*10^{-6}T=1.013\mu T

hence, B_o = 1.013μT

6 0
2 years ago
Other questions:
  • A ship maneuvers to within 2500 m of an island's 1800 m high mountain peak and fires a projectile at an enemy ship 610 m on the
    5·2 answers
  • Mark and Balthazar are preparing to conduct neutralization reactions in which they add a base to two different solutions, citric
    7·2 answers
  • A 10-kg dog is running with a speed of 5.0 m/s. what is the minimum work required to stop the dog in 2.40 s?
    7·1 answer
  • A system delivers 1275 j of heat while the surroundings perform 855 j of work on it. calculate ∆esys in j.
    8·1 answer
  • In a thunderstorm, the air must be ionized by a high voltage before a conducting path for a lightning bolt can be created. an el
    11·1 answer
  • Many gates at railway crossings are operated manually. A typical gate consists of a rod usually made of iron, consisting heavy w
    5·1 answer
  • For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of t
    13·1 answer
  • 1. Describe the methods by which an electric potential develops in primary cells and dry cells.
    13·1 answer
  • Find the work done in pumping gasoline that weighs 6600 newtons per cubic meter. A cylindrical gasoline tank 3 meters in diamete
    7·1 answer
  • In a study, the data you collect is Habits on a Always/Sometimes/Never scale.What is the level of measurement?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!