a) 120 s
b) v = 0.052R [m/s]
Explanation:
a)
The period of a revolution in a simple harmonic motion is the time taken for the object in motion to complete one cycle (in this case, the time taken to complete one revolution).
The graph of the problem is missing, find it in attachment.
To find the period of revolution of the book, we have to find the time between two consecutive points of the graph that have exactly the same shape, which correspond to two points in which the book is located at the same position.
The first point we take is t = 0, when the position of the book is x = 0.
Then, the next point with same shape is at t = 120 s, where the book returns at x = 0 m.
Therefore, the period is
T = 120 s - 0 s = 120 s
b)
The tangential speed of the book is given by the ratio between the distance covered during one revolution, which is the perimeter of the wheel, and the time taken, which is the period.
The perimeter of the wheel is:

where R is the radius of the wheel.
The period of revolution is:

Therefore, the tangential speed of the book is:

The resultant static friction force is equal to 20 N to the left.
Why?
I'm assuming that you forgot to write the question of the exercise, so, I will try to complete it:
"A 50-n crate sits on a horizontal floor where the coefficient of static friction between the crate and the floor is 0.50 . A 20-n force is applied to the crate acting to the right. What is the resulting static friction force acting on the crate?"
So, if we are going to calculate the resulting static friction force, it means that there is no movement, we must remember that the friction coefficient will give us the maximum force before the crate starts to move.
We can calculate the static friction force by using the following formula:

Since the crate is not moving (static), the static friction force acting on the crate will be equal to the applied force.
Calculating we have:


Hence, the static friction force is equal to 20 N to the left (since the applied force is acting to the right)
So,
Since the static friction force is equal to the applied force, the crate does not start to move.
Have a nice day!
Answer:
The end of the meter stick with the deflated balloon should have risen into the air. ... The only way the balloon could have lost mass is if the air that was inside it has mass. With this experiment you have shown that air takes up space and has mass, so you have proven that air is matter.
Explanation:
The distance an object falls, from rest, in gravity is
D = (1/2) (G) (T²)
'T' is the number seconds it falls.
In this problem,
0.92 meter = (1/2) (9.8) (T²)
Divide each side by 4.9 : 0.92 / 4.9 = T²
Take the square root
of each side: √(0.92/4.9) = T
0.433 sec = T
The horizontal speed doesn't make a bit of difference in
how long it takes to reach the floor. BUT ... if you want to
know how far from the table the pencil lands, you can find
that with the horizontal speed.
The pencil is in the air for 0.433 second.
In that time, it travels
(0.433s) x (1.4 m/s) = 0.606 meter
from the edge of the table.
Answer:
P=627.47W
Explanation:
To solve this problem we have to take into account, that the work done by the winch is

the force, at least must equal the gravitational force

with force the tension in the cable makes the winch go up.
The work done is

To calculate the power we need to know what is the time t. But first we have to compute the acceleration
The acceleration will be

and the time t

The power will be

HOPE THIS HELPS!!