Answer:

Explanation:
Given that:
Absolute temperature of the body, 
- emissivity of the body,

<u>Using Stefan Boltzmann Law of thermal radiation:</u>

where:
(Stefan Boltzmann constant)
Now putting the respective values:


Answer:
<em>Entropy Change = 0.559 Times</em>
Explanation:
Entropy change is determined by the change in the micro-states of a system. As we know that the micro-states are the same as measure of disorderness between initial and final states, that's the the amount of change in micro-states determine how much of entropy has changed in the system.
Answer:
Specific gravity of other fluid = .854 (Approx)
Explanation:
Given:
Mass of water = 35 g
Mass of filled bottle with water = 98.44 g
Mass of filled bottle with fluid = 89.22 g
Computation:
Mass of water = 98.44g - 35g = 63.44g
Density of water = 1000 g/L
Volume of bottle = 63.44/1000 = 0.06344L
Mass of other liquid = 89.22g - 35g = 54.22g
Density of other liquid = 54.22g/0.06344L = 854.665826 g/L
Water has a specific gravity = 1
So , specific gravity of other fluid
1000 / 854.665826 = 1 / specific gravity of other fluid
Specific gravity of other fluid = .854 (Approx)
Answer:
The skater's speed after she stops pushing on the wall is 1.745 m/s.
Explanation:
Given that,
The average force exerted on the wall by an ice skater, F = 120 N
Time, t = 0.8 seconds
Mass of the skater, m = 55 kg
It is mentioned that the initial sped of the skater is 0 as it was at rest. The change in momentum of skater is :

The change in momentum is equal to the impulse delivered. So,

So, the skater's speed after she stops pushing on the wall is 1.745 m/s.