answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pishuonlain [190]
2 years ago
14

Consider a capacitor made of two rectangular metal plates of length and width , with a very small gap between the plates. There

is a charge on one plate and a charge on the other. Assume that the electric field is nearly uniform throughout the gap region and negligibly small outside. Calculate the attractive force that one plate exerts on the other. Remember that one of the plates doesn't exert a net force on itself. (Enter the magnitude. Use any variable or symbol stated above along with the following as necessary: r0.)
F = θ/2∑0_w
Physics
1 answer:
mezya [45]2 years ago
4 0

Answer:

F= σ² L² /2ε₀

F = (L² ε₀/4π)   ΔV² / r⁴

Explanation:

a)  For this exercise we can use Coulomb's law

          F = - k Q² / r²

where the negative sign indicates that the force is attractive and the value of the charge is equal to the two plates

Capacitance is defined by

         C = Q / ΔV

        Q = C ΔV

also the capacitance for a parallel plate capacitor is related to its shape

         C = ε₀ A / r

we substitute

         Q = ε₀ A ΔV / r

we substitute in the force equation

            F = k (ε₀ A ΔV / r)² / r²

           k = 1 / 4πε₀

           F = ε₀ /4π  L² ΔV² / r⁴4

           F = L² ΔV² ε₀/ (4π r⁴)

           F = (L² ε₀/4π)   ΔV² / r⁴

b) Another way to solve the exercise is to use the relationship between the force and the electric field

          F = q E

where we can calculate the field created by a plane using Gaussian law, where we use a cylinder with a base parallel to the plate as the Gaussian surface

           Ф = ∫E .dA = q_{int} / ε₀

the plate have two side

           2E A = q_{int} / ε₀

              E = σ / 2ε₀

               σ = q_{int} / A

               

substituting in force

          F = q σ / 2ε₀

the charge total on the other plate is

       q = σ A

       q = σ  L²

      F= σ² L² /2ε₀

You might be interested in
For a particular reaction, the change in enthalpy is 51kJmole and the activation energy is 109kJmole. Which of the following cou
Ronch [10]

Answer

given,

change in enthalpy = 51 kJ/mole

change in activation energy = 109 kJ/mole

when a reaction is catalysed change in enthalpy between the product and the reactant does not change it remain constant.

where as activation energy of the product and the reactant decreases.

example:

ΔH = 51 kJ/mole

E_a= 83 kJ/mole

here activation energy decrease whereas change in enthalpy remains same.

5 0
1 year ago
In the design of a timing mechanism, the motion of pin P in the fixed circular slot is controlled by the guide A, which is being
german

Answer: Got It!

<em>Explanation:</em> Guide A Starts From Rest With Pin P At The Lowest Point In The Circular Slot, And Accelerates Upward At A Constant Rate Until It Reaches A Speed Of 175 Mm/s At The ... In the design of a timing mechanism, the motion of pin P in the fixed circular slot is controlled by the guide A, which is being elevated by its lead screw.

6 0
2 years ago
In an isolated system, the total heat given off by warmer substances equals the total heat energy gained by cooler substances. N
galina1969 [7]

Answer:

The temperature of the cooler substance was close to the room temperature. Therefore, the system experienced less change

Explanation:

Generally, in a closed system containing two bodies at different temperatures, there is a flow of heat energy from the body at a higher temperature to the body at a lower temperature. The effect is more significant when there is a large temperature difference between the bodies. However, if the temperature difference is small or insignificant, the change will be less.

3 0
1 year ago
A) The current theory of the structure of the Earth, called plate tectonics, tells us that the continents are in constant motion
suter [353]

A) The mass of the continent is 2.5\cdot 10^{21} kg

B) The kinetic energy is 2016 J

C) The speed of the jogger should be 7.1 m/s

Explanation:

A)

The mass of the continent can be calculated as

m = \rho V

where

\rho = 2800 kg/m^3 is its density

V is its volume

We have to calculate its volume. We know that the continent is represented as a slab of side 5900 km (so its surface is 5900 x 5900, assuming it is a square) and depth of 26 km, so its volume is:

V=(5900 km)^2 (26 km)=9.05\cdot 10^8 km^3 =9.05 \cdot 10^8 \cdot (10^9 m^3/k^3)=9.05\cdot 10^7 m^3

So, the mass of the continent is

m=\rho V = (2800)(9.05\cdot 10^{17})=2.5\cdot 10^{21} kg

B)

The kinetic energy of a body is given by

K=\frac{1}{2}mv^2

where

m is the mass of the body

v is its speed

For the continent, we have:

m=2.5\cdot 10^{21} kg is the mass

v=4 cm/year is the speed

We have to convert the speed into SI units. we have:

1 cm = 0.01 m

1 year = (365)(24)(60)(60) s = 3.15\cdot 10^7 s

So, the speed is

v=4 cm/year = 0.04 m/year \cdot \frac{1}{3.15\cdot 10^7}=1.27\cdot 10^{-9} m/s

Therefore, the kinetic energy is

K=\frac{1}{2}(2.5\cdot 10^{21} kg)(1.27\cdot 10^{-9} m/s)^2=2016 J

C)

Again, the kinetic energy of an object is

K=\frac{1}{2}mv^2

For the jogger in this problem, his mass is

m = 80 kg

And we want its kinetic energy to be equal to that of the continent, so

K = 2016 J

Re-arranging the equation for v, we find what speed the jogger needs to have this kinetic energy:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(2016)}{80}}=7.1 m/s

Learn more about kinetic energy here:

brainly.com/question/6536722

#LearnwithBrainly

8 0
1 year ago
A 60.0 kg object is moving east at 8.00 m/s, and then slows down to 4.00 m/s. How much work was done?
Artist 52 [7]
The answer is  -1440. That is letter A.
8 0
1 year ago
Read 2 more answers
Other questions:
  • A car covers 72 kilometers in the first hour of its journey. In the next hour, it covers 90 kilometers. What is the amount of wo
    15·2 answers
  • During action potential, the electrical charge inside the neuron is __________ the electrical charge outside the neuron.
    9·2 answers
  • While Bob is demonstrating the gravitational force on falling objects to his class, he drops an 1.0 lb bag of feathers from the
    6·2 answers
  • Two boys want to balance a seesaw perfectly. One boy weighs 120 pounds and is sitting four feet from the fulcrum. The other boy
    7·1 answer
  • Identical guns fire identical bullets horizontally at the same speed from the same height above level planes, one on the Earth a
    7·2 answers
  • Loss of traction between the rear wheels and road surfaces like ice, sand, or gravel results in what is called _______________.
    8·1 answer
  • A 450g mass on a spring is oscillating at 1.2Hz. The totalenergy of the oscillation is 0.51J. What is the amplitude.
    9·1 answer
  • A boat of mass 250 kg is coasting, with its engine in neutral, through the water at speed 1.00 m/s when it starts to rain with i
    10·1 answer
  • A 1.45 kg falcon catches a 0.515 kg dove from behind in midair. What is their velocity after impact if the falcon's velocity is
    5·1 answer
  • A farmer wants to determine which of two brands of cow feed is best for the cows on a farm. Before using one of the feeds on all
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!