answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pishuonlain [190]
2 years ago
14

Consider a capacitor made of two rectangular metal plates of length and width , with a very small gap between the plates. There

is a charge on one plate and a charge on the other. Assume that the electric field is nearly uniform throughout the gap region and negligibly small outside. Calculate the attractive force that one plate exerts on the other. Remember that one of the plates doesn't exert a net force on itself. (Enter the magnitude. Use any variable or symbol stated above along with the following as necessary: r0.)
F = θ/2∑0_w
Physics
1 answer:
mezya [45]2 years ago
4 0

Answer:

F= σ² L² /2ε₀

F = (L² ε₀/4π)   ΔV² / r⁴

Explanation:

a)  For this exercise we can use Coulomb's law

          F = - k Q² / r²

where the negative sign indicates that the force is attractive and the value of the charge is equal to the two plates

Capacitance is defined by

         C = Q / ΔV

        Q = C ΔV

also the capacitance for a parallel plate capacitor is related to its shape

         C = ε₀ A / r

we substitute

         Q = ε₀ A ΔV / r

we substitute in the force equation

            F = k (ε₀ A ΔV / r)² / r²

           k = 1 / 4πε₀

           F = ε₀ /4π  L² ΔV² / r⁴4

           F = L² ΔV² ε₀/ (4π r⁴)

           F = (L² ε₀/4π)   ΔV² / r⁴

b) Another way to solve the exercise is to use the relationship between the force and the electric field

          F = q E

where we can calculate the field created by a plane using Gaussian law, where we use a cylinder with a base parallel to the plate as the Gaussian surface

           Ф = ∫E .dA = q_{int} / ε₀

the plate have two side

           2E A = q_{int} / ε₀

              E = σ / 2ε₀

               σ = q_{int} / A

               

substituting in force

          F = q σ / 2ε₀

the charge total on the other plate is

       q = σ A

       q = σ  L²

      F= σ² L² /2ε₀

You might be interested in
What is the temperature when a solid begins to liquefy
MrRa [10]

Answer:

Explanation:

The temperature is at its Melting Point - <em>t</em><u><em>emperature at which a solid begins to liquefy. </em></u>

<u><em /></u>

<u><em>Got The Answer From Google</em></u>

6 0
2 years ago
In the ENGR 10 lab (E391), there are 50 long light bulbs (P=100 W) and 30 regular bulbs (P=60 W). How much energy is consumed li
Alenkinab [10]

Answer:

Total energy saving will be 0.8 KWH

Explanation:

We have given there are 50 long light bulbs of power 100 W so total power of 50 bulb = 100×50 = 5000 W = 5 KW

30 bulbs are of power 60 W

So total power of 30 bulbs = 30×60 = 1800 W = 1.8 KW

Total power of 80 bulbs = 1.8+5 = 6.8 KW

Total time = 3 hour

We know that energy E=power\times time=6.8\times 3=20.4KWH

Now power of each CFL bulb = 25 W

So power of 80 bulbs = 80×25 = 2000 W = 2 KW

Energy of 80 bulbs = 2×3 = 6 KWH

So total energy saving = 6.8-6 = 0.8 KWH

6 0
2 years ago
The Lyman series comprises a set of spectral lines. All of these lines involve a hydrogen atom whose electron undergoes a change
mihalych1998 [28]

Answer:

a) 1.2*10^-7 m

b) 1.0*10^-7 m

c) 9.7*10^-8 m

d) ultraviolet region

Explanation:

To find the different wavelengths you use the following formula:

\frac{1}{\lambda}=R_H(1-\frac{1}{n^2})

RH: Rydberg constant = 1.097 x 10^7 m^−1.

(a) n=2

\frac{1}{\lambda}=(1.097*10^7m^{-1})(1-\frac{1}{(2)^2})=8227500m^{-1}\\\\\lambda=1.2*10^{-7}m

(b)

\frac{1}{\lambda}=(1.097*10^7m^{-1})(1-\frac{1}{(3)^2})=9751111,1m^{-1}\\\\\lambda=1.0*10^{-7}m

(c)

\frac{1}{\lambda}=(1.097*10^7m^{-1})(1-\frac{1}{(4)^2})=10284375m^{-1}\\\\\lambda=9.7*10^{-8}m

(d) The three lines belong to the ultraviolet region.

8 0
2 years ago
Scientific knowledge builds upon previous knowledge."
notka56 [123]

Answer:

B

Explanation:

Magic

4 0
2 years ago
If Katie swims from one end of the pool, to the other side, and then swims back to her original spot, her average velocity is ha
Crank

Answer:

false.

Explanation:

Ok, we define average velocity as the sum of the initial and final velocity divided by two.

Remember that the velocity is a vector, so it has a direction.

Then when she goes from the 1st end to the other, the velocity is positive

When she goes back, the velocity is negative

if both cases the magnitude of the velocity, the speed, is the same, then the average velocity is:

AV = (V + (-V))/2  = 0

While the average speed is the quotient between the total distance traveled (twice the length of the pool) and the time it took to travel it.

So we already can see that the average velocity will not be equal to half of the average speed.

The statement is false

4 0
2 years ago
Other questions:
  • A blue puck has a velocity of 3i –4j m/s. Its mass is 20 kg. What is its momentum?
    6·2 answers
  • You move a 2.5 kg book from a shelf that is 1.2 m above the ground to a shelf that is 2.6 m above the ground. What is the change
    7·1 answer
  • Justin signed a rental agreement for his condo. After he moved out, the owner determined that the condo needed to be cleaned, th
    14·2 answers
  • For what value of the ratio r/a of plate radius to separation between the plates does the electric field at the point x=a/2 on t
    15·1 answer
  • The length of a 60 W, 240 Ω light bulb filament is 60 cm Remembering that the current in the filament is proportional to the ele
    7·1 answer
  • A two-resistor voltage divider employing a 2-k? and a 3-k? resistor is connected to a 5-V ground-referenced power supply to prov
    12·1 answer
  • A professor's office door is 0.99 m wide, 2.2 m high, 4.2 cm thick; has a mass of 27 kg, and pivots on frictionless hinges. A "d
    14·1 answer
  • Maria throws an apple vertically upward from a height of 1.3 m with an initial velocity of +2.8 m/s. Will the apple reach a frie
    13·1 answer
  • A 2-kg wood block is pulled by a string across a rough horizontal floor. The string exerts a tension force of 30 N on the block
    13·1 answer
  • When calculating acceleration, to find the change in velocity, you subtract the ____________________ velocity from the _________
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!