Explanation:
According to Dalton's atomic theory, all the atoms are individual, all the atoms of the same element are identical in properties and mass, the compound is formed from two or more kinds of the atoms, all the matter is made up of small atoms and the chemical reaction is a rearrangement of the atoms.
The discoveries which contradicts the components of Dalton's atomic theory from the given discoveries are:
Nuclear reactions can change an atom of one element into an atom of another element.
Atoms of a given element can have different numbers of neutrons.
Atoms contain smaller particles: protons, neutrons, and electrons.
Answer:
The time constant and its uncertainty is t ± Δt = 0.526 ± 0.057 s
Explanation:
If we make a comparison we have to:
y = A*(1-e^-(C*x)) + B
If the time remains constant we have to:
t = R*C = 1/C
In this way we calculate the time constant and its uncertainty. this will be equal to:
t ± Δt = (1/1.901) ± (0.2051/1.901)*(1/1.901) = 0.526 ± 0.057 s
Answer:
The child's mass is 14.133 kg
Explanation:
From the principle of conservation of linear momentum, we have;
(m₁ + m₂) × v₁ + m₃ × v₂ = (m₁ + m₂) × v₃ - m₃ × v₄
We include the negative sign as the velocities were given as moving in the opposite directions
Since the child and the ball are at rest, we have;
v₁ = 0 m/s and v₂= 0 m/s
Hence;
0 = m₁ × v₃ - m₂ × v₄
(m₁ + m₂)× v₃ = m₃ × v₄
Where:
m₁ = Mass of the child
m₂ = Mass of the scooter = 2.4 kg
v₃ = Final velocity of the child and scooter = 0.45 m/s
m₃ = Mass of the ball = 2.4 kg
v₄ = Final velocity of the ball = 3.1 m/s
Plugging the values gives;
(m₁ + 2.4)× 0.45 = 2.4 × 3.1
(m₁ + 2.4) = 16.533
∴ m₁ + 2.4 = 16.533
m₁ = 16.533 - 2.4 = 14.133 kg
The child's mass = 14.133 kg.
Answer: 592.37m
Explanation:
Person D is the blue line.
The total displacement is equal to the difference between the final position and the initial position, if the initial position is (0,0) we have that he first goes down two blocks, then right 6 blocks. then up 4 blocks, then left 1 block.
Now i will considerate that the positive x-axis is to the right and the positive y-axis is upwards.
Then the new position will be, if B is a block:
P =(6*B - 1*B, -2*B + 4*B) = (5*B, 2*B)
And we know that B = 110m
P = (550m, 220m)
Now, then the displacement will be equal to the magnitude of our vector, (because the difference between P and the initial position is equal to P, as the initial position is (0,0)) this is:
P = √(550^2 + 220^2) = 592.37m
Answer:
λ = 
Explanation:
Using the De Broglie equation, the characteristic wavelength is given by:
λ = 
where
h = Planck's constant =
Js.
p = momentum
Momentum, p, can be calculated using:
p = 
where
m = mass of the electron =
kg
E = Energy of the electron = 13.4 keV =
J =
J
=> p = 
p = 
p =
kgm/s
Therefore, characteristic wavelength, λ, is:
λ = 
λ = 