Answer:
r = 4.21 10⁷ m
Explanation:
Kepler's third law It is an application of Newton's second law where the forces of the gravitational force, obtaining
T² = (
) r³ (1)
in this case the period of the season is
T₁ = 93 min (60 s / 1 min) = 5580 s
r₁ = 410 + 6370 = 6780 km
r₁ = 6.780 10⁶ m
for the satellite
T₂ = 24 h (3600 s / 1h) = 86 400 s
if we substitute in equation 1
T² = K r³
K = T₁²/r₁³
K =
K = 9.99 10⁻¹⁴ s² / m³
we can replace the satellite values
r³ = T² / K
r³ = 86400² / 9.99 10⁻¹⁴
r = ∛(7.4724 10²²)
r = 4.21 10⁷ m
this distance is from the center of the earth
Explanation:
Given that,
Initial speed of the electron, 
Distance, s = 5 cm = 0.05 cm
Acceleration of the electron,
(a) Let v is the electron's velocity when it emerges from this region. It can be calculated as :


v = 871779.788 m/s
or

(b) Let t is the time for which the electron take to cross the region. It can be calculated as:



Hence, this is the required solution.
Answer:
A ferromagnetic material is a temporary magnet. The domains in a ferromagnetic material are randomly arranged. Under certain actions, the domains align in a particular direction and the material acts as a magnet. The actions that can cause alignment of domains in a ferromagnetic material are:
- rubbing the material against a magnet would cause the alignment of domains in the same direction as of the magnet.
- passing electricity around the material would generate magnetic field which would cause domains to align along the direction of the field.
- placing the material near a strong magnet would cause the alignment of domains in the direction of the field generated by the strong magnet.
Other actions like heating the material, placing the material in a magnetic field of opposite polarity and hitting the material would lead to demagnetization of the magnetic material.
To help you I need to assume a wavelength and then calculate the momentum.
The momentum equation for photons is:
p = h / λ , this is the division of Plank's constant by the wavelength.
Assuming λ = 656 nm = 656 * 10 ^ - 9 m, which is the wavelength calcuated in a previous problem, you get:
p = (6.63 * 10 ^-34 ) / (656 * 10 ^ -9) kg * m/s
p = 1.01067 * 10^ - 27 kg*m/s which must be rounded to three significant figures.
With that, p = 1.01 * 10 ^ -27 kg*m/s
The answers are rounded to only 2 significan figures, so our number rounded to 2 significan figures is 1.0 * 10 ^ - 27 kg*m/s
So, assuming the wavelength λ = 656 nm, the answer is the first option: 1.0*10^-27 kg*m/s.
Answer:
A) T1 = 566 k = 293°C
B) T2 = 1132 k = 859°C
Explanation:
A)
The average kinetic energy of the molecules of an ideal gas is givwn by the formula:
K.E = (3/2)KT
where,
K.E = Average Kinetic Energy
K = Boltzman Constant
T = Absolute Temperature
At 10°C:
K.E = K10
T = 10°C + 273 = 283 K
Therefore,
K10 = (3/2)(K)(283)
FOR TWICE VALUE OF K10:
T = T1
Therefore,
2 K10 = (3/2)(K)(T1)
using the value of K10:
2(3/2)(K)(283) = (3/2)(K)(T1)
<u>T1 = 566 k = 293°C</u>
<u></u>
B)
The average kinetic energy of the molecules of an ideal gas is given by the formula:
K.E = (3/2)KT
but K.E is also given by:
K.E = (1/2)(m)(vrms)²
Therefore,
(3/2)KT = (1/2)(m)(vrms)²
vrms = √(3KT/m)
where,
vrms = Root Mean Square Velocity of Molecule
K = Boltzman Constant
T = Absolute Temperature
m = mass
At
T = 10°C + 273 = 283 K
vrms = √[3K(283)/m]
FOR TWICE VALUE OF vrms:
T = T2
Therefore,
2 vrms = √(3KT2/m)
using the value of vrms:
2√[3K(283)/m] = √(3KT2/m)
2√283 = √T2
Squaring on both sides:
(4)(283) = T2
<u>T2 = 1132 k = 859°C</u>