answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oduvanchick [21]
2 years ago
10

A small rivet connecting two pieces of sheet metal is being clinched by hammering. Determine the impulse exerted on the rivet an

d the energy absorbed by the rivet under each blow, knowing that the head of the hammer has a weight of 1.5 lb and that it strikes the rivet with a velocity of 20 ft/s. Assume that the hammer does not rebound and that the anvil is supported by springs and (a) has an infinite mass (rigid support), (b) has a weight of 9 lb. Beer, Ferdinand.

Physics
1 answer:
kykrilka [37]2 years ago
5 0

Answer:

a) the impulse exerted by the rivet when the anvil has an infinite mass support is 0.932 lb.s

the energy absorbed by the rivet under each blow  when the anvil has an infinite mass support = 9.32 ft.lb

b) the impulse exerted by the rivet when the anvil has a support weight of 9 lb = 0.799 lb.s

the energy absorbed by the rivet under each blow when the anvil has a support weight of 9 lb is = 7.99 ft.lb

Explanation:

The first picture shows a schematic view of a free body momentum diagram of the hammer head and the anvil.

Using the principle of conservation of momentum to determine the final velocity of anvil and hammer after the impact; we have:

m_Hv_H + m_Av_A = m_Hv_2+m_Av_2

From the question given, we can deduce that the anvil is at rest;

∴ v_A = 0; then, we have:

m_Hv_H + 0 = (m_H+m_A) v_2

Making v_2 the subject of the formula; we have:

v_2 = \frac{m_Hv_H}{m_H + m_A}       ------- Equation  (1)

Also, from the second diagram; there is a representation of a free  body momentum  of the hammer head;

From the diagram;

F = impulsive force exerted on the  rivet

Δt = the change in time of application of the impulsive force

Using the principle of impulse of momentum to the hammer in the quest to determine the impulse exerted (i.e FΔt ) on the rivet; we have:

m_Hv_H - F \delta t = m_Hv_2

- F \delta t = - m_Hv_H + m_Hv_2

F \delta t = m_Hv_H - m_Hv_2

F \delta t = m_H(v_H - v_2)        ------- Equation   (2)

Using the function of the kinetic energy  of the hammer before impact T_1; we have:

T_1 = \frac{1}{2} m_Hv_H^2  -------- Equation (3)

We determine the mass of the hammer m_H  by using the formula from:

W_H = m_Hg

where;

W_H = weight of the hammer

m_H = mass of the hammer

g = acceleration due to gravity

Making m_H the subject of the formula; we have:

m_H = \frac{W_H}{g}

m_H = \frac{1.5 \ lb}{32.2 \ ft/s^2}

m_H = 0.04658 \ lb.s^2/ft

Now;

T_1 = \frac{1}{2} m_Hv_H^2

T_1 = \frac{1}{2}*(0.04658 \ lb.s^2 /ft) *(20 \ ft/s)^2

T_1 = \frac{18.632 }{2}

T_1 = 9.316 \ ft.lb

After the impact T_2 ; the final kinetic energy of the hammer and anvil can be written as:

T_2 = \frac{1}{2}(m_H +m_A)v^2_2

Recall from equation (1) ; where v_2 = (\frac{m_Hv_H}{m_H+m_A})  ; if we slot that into the above equation; we have:

T_2 = \frac{1}{2}(m_H +m_A)( \frac{m_Hv_H}{m_H+m_A})^2

T_2 = \frac{1}{2} \frac{m^2_H +v^2}{m_H+m_A}

T_2 = \frac{1}{2} ({m^2_H +v^2})(\frac{m_H}{m_H+m_A})

Also; from equation (3)

T_1 = \frac{1}{2} m_Hv_H^2; Therefore;

T_2 = T_1 (\frac{m_H}{m_H+m_A})    ----- Equation (4)

a)

Now; To calculate the impulse exerted by the rivet FΔt and the energy absorbed by the rivet under each blow  ΔT when the anvil has an infinite mass support; we have the following process

First , we need to find the mass of the anvil when we have an infinite mass support;

mass of the anvil m_A = \frac{W_A}{g}

where we replace;  W_A \ with \ \infty and g = 32.2 ft/s²

m_A =  \frac{\infty}{32.2 \ ft/s}

However ; from equation (1)

v_2 = \frac{m_H v_H}{m_H + m_A}

v_2 = \frac{0.04658*20}{0.04658+ \ \infty}

v_2 = 0

From equation (2)

F \delta t = m_H(v_H + v_2)      

F \delta t = (0.04658 lb .s^2 /ft )(20ft/s  - 0)

F \delta t = \ 0.932 \  lb.s

Therefore the impulse exerted by the rivet when the anvil has an infinite mass support is  0.932 lb.s

For the energy absorbed by the rivet ; we have:

T_2 = T_1 (\frac{m_H}{m_H+m_A} )

where;

T_1= 9.316 \ ft.lb

m_H = 0.04658 \ lb.s^2/ft

m_A = \infty

Then;

T_2 = (9.316 \ ft.lb) (\frac{0.04658\  lb.s^2/ft)}{0.04658  \ lb.s^2/ft+ \infty} )

T_2 = (9.316 \ ft.lb)* 0

T_2 = 0

Then the energy absorbed by the rivet under each blow ΔT when the anvil has an infinite mass support

ΔT = T_1 - T_2

ΔT = 9.316 ft.lb - 0

ΔT ≅  9.32 ft.lb

Therefore; we conclude that the energy absorbed by the rivet under each blow  when the anvil has an infinite mass support = 9.32 ft.lb

b)

Due to the broadness of this question, the text is more than 5000 characters, so i was unable to submit it after typing it . In the bid to curb that ; i create a document for the answer  for the part b of this question.

The attached file can be found below.

You might be interested in
A dolphin swims due east for 1.90 km, then swims 7.20 km in the direction south of west. What are the magnitude and direction of
kykrilka [37]

Answer:

magnitude = 7.446 km, direction = 75.22° north of east

Explanation:

From the questions,

To get the the magnitude of the resultant vector we use Pythagoras theorem

a² = b²+c²

From the diagram,

y² = 1.9²+7.2²

y² = 55.45

y = √(55.45)

y = 7.446 km.

The direction of the dolphin is given as,

θ = tan⁻¹(7.2/1.9)

θ = tan⁻¹(3.7895)

θ = 75.22° north of east

Hence the magnitude of the resultant vector = 7.446 km, and it direction is 75.22° north of east

3 0
2 years ago
Buffalo, New York, experienced a snowstorm November 13–21, 2014. Residents refer to the event as “Snowvember.” What was the like
scZoUnD [109]
I know you're probably done with this by now, but the answer is *Lake-Effect Snow*
5 0
2 years ago
Read 2 more answers
Water is a colorless and odorless liquid. It can exist in solid, liquid, and gas states. It boils at 100 degrees C and melts at
BARSIC [14]

Answer: Option (c) is the correct answer.

Explanation:

Physical properties are the properties in which there is no change in chemical composition of a substance. On the other hand, chemical properties are the properties which change the chemical composition of a substance.

For example, when water boils at 100 ^{o}C then it changes into vapor state whereas when water freezes at 0^{0}C then it changes state from liquid to solid.

This means only physical state of water is changing and there is no change in chemical composition of water.

Hence, we can conclude that best option describing given information is that these are the physical changes water undergoes.

4 0
2 years ago
A force of 6.0 N pulls a box 0.40 m along a frictionless plane that is inclined at 36°. What work is being done by the pulling f
lys-0071 [83]

Answer:

Expression of work done is

W = Fd cos\theta

Work done to move the sled is given as 1.94 J

Explanation:

As we know that the formula of work done is given as

W = Fd cos\theta

here we know that

F = 6 N

d = 0.4 m

\theta = 36 degree

so we will have

W = 6 \times 0.4 cos36

W = 1.94 J

7 0
2 years ago
Which statement correctly describes the relationship between frequency and wavelength?
Len [333]
The relationship between the frequency and wavelength of a wave is given by the equation:

v=λf, where v is the velocity of the wave, λ is the wavelength and f is the frequency. 

If we divide the equation by f we get:

λ=v/f

From here we see that the wavelength and frequency are inversely proportional. So as the frequency increases the wavelength decreases. 

So the second statement is true: As the frequency of a wave increases, the shorter the wavelength is.  
3 0
2 years ago
Read 2 more answers
Other questions:
  • Describe several uses of plastic, and explain why plastic is a good choice for these products
    14·1 answer
  • Is the electric potential energy of a particle with charge q the same at all points on an equipotential surface?
    13·1 answer
  • Garret's swimming coach is giving him important and helpful tips to improve his swimming skills. Which gesture suggests that Gar
    11·2 answers
  • A ruler of length 0.30m is pivoted at its centre. Equal and opposite forces of magnitude 2.0N are applied to the ends of the rul
    9·1 answer
  • A small rock is thrown straight up with initial speed v0 from the edge of the roof of a building with height H. The rock travels
    11·1 answer
  • While dangling a hairdryer by its cord, you observe that the cord is vertical when the hairdryer isoff and, once it is turned on
    5·1 answer
  • Iron man wears an awesome ironsuit.He is flying over high current carrying wire. Will he be affected?
    12·1 answer
  • A wire of 5.8m long, 2mm diameter carries 750ma current when 22mv potential difference is applied at its ends. if drift speed of
    10·2 answers
  • The most common type of mirage is an illusion that light from faraway objects seem to be reflected by a pool of water that is no
    10·1 answer
  • How can philosophy help you become a productive citizen<br>​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!