answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oduvanchick [21]
1 year ago
10

A small rivet connecting two pieces of sheet metal is being clinched by hammering. Determine the impulse exerted on the rivet an

d the energy absorbed by the rivet under each blow, knowing that the head of the hammer has a weight of 1.5 lb and that it strikes the rivet with a velocity of 20 ft/s. Assume that the hammer does not rebound and that the anvil is supported by springs and (a) has an infinite mass (rigid support), (b) has a weight of 9 lb. Beer, Ferdinand.

Physics
1 answer:
kykrilka [37]1 year ago
5 0

Answer:

a) the impulse exerted by the rivet when the anvil has an infinite mass support is 0.932 lb.s

the energy absorbed by the rivet under each blow  when the anvil has an infinite mass support = 9.32 ft.lb

b) the impulse exerted by the rivet when the anvil has a support weight of 9 lb = 0.799 lb.s

the energy absorbed by the rivet under each blow when the anvil has a support weight of 9 lb is = 7.99 ft.lb

Explanation:

The first picture shows a schematic view of a free body momentum diagram of the hammer head and the anvil.

Using the principle of conservation of momentum to determine the final velocity of anvil and hammer after the impact; we have:

m_Hv_H + m_Av_A = m_Hv_2+m_Av_2

From the question given, we can deduce that the anvil is at rest;

∴ v_A = 0; then, we have:

m_Hv_H + 0 = (m_H+m_A) v_2

Making v_2 the subject of the formula; we have:

v_2 = \frac{m_Hv_H}{m_H + m_A}       ------- Equation  (1)

Also, from the second diagram; there is a representation of a free  body momentum  of the hammer head;

From the diagram;

F = impulsive force exerted on the  rivet

Δt = the change in time of application of the impulsive force

Using the principle of impulse of momentum to the hammer in the quest to determine the impulse exerted (i.e FΔt ) on the rivet; we have:

m_Hv_H - F \delta t = m_Hv_2

- F \delta t = - m_Hv_H + m_Hv_2

F \delta t = m_Hv_H - m_Hv_2

F \delta t = m_H(v_H - v_2)        ------- Equation   (2)

Using the function of the kinetic energy  of the hammer before impact T_1; we have:

T_1 = \frac{1}{2} m_Hv_H^2  -------- Equation (3)

We determine the mass of the hammer m_H  by using the formula from:

W_H = m_Hg

where;

W_H = weight of the hammer

m_H = mass of the hammer

g = acceleration due to gravity

Making m_H the subject of the formula; we have:

m_H = \frac{W_H}{g}

m_H = \frac{1.5 \ lb}{32.2 \ ft/s^2}

m_H = 0.04658 \ lb.s^2/ft

Now;

T_1 = \frac{1}{2} m_Hv_H^2

T_1 = \frac{1}{2}*(0.04658 \ lb.s^2 /ft) *(20 \ ft/s)^2

T_1 = \frac{18.632 }{2}

T_1 = 9.316 \ ft.lb

After the impact T_2 ; the final kinetic energy of the hammer and anvil can be written as:

T_2 = \frac{1}{2}(m_H +m_A)v^2_2

Recall from equation (1) ; where v_2 = (\frac{m_Hv_H}{m_H+m_A})  ; if we slot that into the above equation; we have:

T_2 = \frac{1}{2}(m_H +m_A)( \frac{m_Hv_H}{m_H+m_A})^2

T_2 = \frac{1}{2} \frac{m^2_H +v^2}{m_H+m_A}

T_2 = \frac{1}{2} ({m^2_H +v^2})(\frac{m_H}{m_H+m_A})

Also; from equation (3)

T_1 = \frac{1}{2} m_Hv_H^2; Therefore;

T_2 = T_1 (\frac{m_H}{m_H+m_A})    ----- Equation (4)

a)

Now; To calculate the impulse exerted by the rivet FΔt and the energy absorbed by the rivet under each blow  ΔT when the anvil has an infinite mass support; we have the following process

First , we need to find the mass of the anvil when we have an infinite mass support;

mass of the anvil m_A = \frac{W_A}{g}

where we replace;  W_A \ with \ \infty and g = 32.2 ft/s²

m_A =  \frac{\infty}{32.2 \ ft/s}

However ; from equation (1)

v_2 = \frac{m_H v_H}{m_H + m_A}

v_2 = \frac{0.04658*20}{0.04658+ \ \infty}

v_2 = 0

From equation (2)

F \delta t = m_H(v_H + v_2)      

F \delta t = (0.04658 lb .s^2 /ft )(20ft/s  - 0)

F \delta t = \ 0.932 \  lb.s

Therefore the impulse exerted by the rivet when the anvil has an infinite mass support is  0.932 lb.s

For the energy absorbed by the rivet ; we have:

T_2 = T_1 (\frac{m_H}{m_H+m_A} )

where;

T_1= 9.316 \ ft.lb

m_H = 0.04658 \ lb.s^2/ft

m_A = \infty

Then;

T_2 = (9.316 \ ft.lb) (\frac{0.04658\  lb.s^2/ft)}{0.04658  \ lb.s^2/ft+ \infty} )

T_2 = (9.316 \ ft.lb)* 0

T_2 = 0

Then the energy absorbed by the rivet under each blow ΔT when the anvil has an infinite mass support

ΔT = T_1 - T_2

ΔT = 9.316 ft.lb - 0

ΔT ≅  9.32 ft.lb

Therefore; we conclude that the energy absorbed by the rivet under each blow  when the anvil has an infinite mass support = 9.32 ft.lb

b)

Due to the broadness of this question, the text is more than 5000 characters, so i was unable to submit it after typing it . In the bid to curb that ; i create a document for the answer  for the part b of this question.

The attached file can be found below.

You might be interested in
A projectile was launched horizontally with a velocity of 468 m/s, 1.86 m above the ground. Calculate how long it would take for
elena-14-01-66 [18.8K]

Answer:

  0.6 seconds

Explanation:

The time to fall from height h is ...

  t = √(2h/g)

  t = √(2(1.86 m)/(9.8 m/s^2)) ≈ √0.3796 s ≈ 0.616 s

It would take about 0.6 seconds for the projectile to hit the ground.

5 0
2 years ago
Read 2 more answers
A piano wire has a length of 81 cm and a mass of 2.0
choli [55]
<span>Frequency = 394 Hz
 Length of the string L = 81 cm = 0.81 m
 Mass of the string = 0.002 kg
 Tension T = ?
 Wave length of the string is two times the length.
  n x lambda = 2L, we also have lambda = vt = v / f, t is time period and given n = 1.
  Therefore L = v / 2f => v = 2fL
 Deriving form force equation, force here is tension T so
  v = squareroot of (TL/m) hence
   2fL = squareroot of (TL/m) => 4 x f^2 x L^2 = (T x L) / m => T = 4 x f^2 x L x m
 T = 4 x 0.81 x (394)^2 x 0.002 = 4 x 0.81 x 155236 x 0.002
 T = 1005.9 N = 1.006 x 10^3 N</span>
4 0
2 years ago
In a study, the data you collect is Habits on a Always/Sometimes/Never scale.What is the level of measurement?
zzz [600]

Answer:

Ordinal

Explanation:

There are four levels of measurement which include the nominal, ordinal, interval, and ratio. The data collected above is ordinal data as it qualifies the data and still indicates the ordering of the data. It gives the observer an idea of the range of data collected or its rating although mathematical calculations may not be done with it.

The other forms of data include the nominal which simply qualifies the data, the interval which qualifies the data but which the differences between the data can be obtained, and of course the data has no starting point. The ratio scale which is similar to the interval scale but which the ratios between the data obtained can be compared.

8 0
2 years ago
Find the net electric force that the two charges would exert on an electron placed at point on the xx-axis at xx = 0.200 mm. Exp
UkoKoshka [18]

Answer:

The question has some details missing, here is the complete question ; A -3.0 nC point charge is at the origin, and a second -5.0nC point charge is on the x-axis at x = 0.800 m. Find the net electric force that the two charges would exert on an electron placed at point on the x-axis at x = 0.200 m.

Explanation:

The application of coulonb's law is used to approach the question as shown in the attached file.

6 0
1 year ago
The burj Khalifa in Dubai is the worlds tallest building. It rises to an amazing 828M above the ground and if you were to get to
antoniya [11.8K]
I don't understand what you mean by "depth" of the steps.  The flat part of the step has a front-to-back dimension, and the 'riser' has a height.  I don't care about the horizontal dimension of the step because it doesn't add anything to the climber's potential energy.  And if the riser of each step is 20cm high, then 3,234 of them only take him (3,234 x 0.2) = 646.8 meters up off the ground.  So something is definitely fishy about the steps.

Fortunately, we don't need to worry at all about the steps in order to derive a first approximation to the answer ... one that's certainly good enough for high school Physics.

In order to lift his bulk 828 meters from the street to the top of the Burj, the climber has to provide a force of 800 newtons, and maintain it through a distance of 828 meters.  The work [s]he does is (force) x (distance) = <em>662,400 joules. </em>
6 0
2 years ago
Other questions:
  • What is the mass of an object that creates 33,750 joules of energy by traveling at 30 m/sec?
    10·2 answers
  • If you apply 100.0 N of force to lift an object with a single, fixed pulley, then what is the resistive force?
    8·1 answer
  • An object of mass m swings in a horizontal circle on a string of length L that tilts downward at angle θ. Find an expression for
    12·2 answers
  • Calculate the average velocity in m/y of a tectonic plate that has travelled 9000 km to the south in 60 million years
    14·1 answer
  • Calculate the intrapleural pressure if atmospheric pressure is 765 millimeters of mercury, assuming that the subject is at rest
    15·1 answer
  • A narrow beam of light containing red (660 nm) and blue (470 nm) wavelengths travels from air through a 1.00-cm-thick flat piece
    12·1 answer
  • A mirror forms an erect image 40cm from the object and one third its height where must the mirror be situated ​
    12·1 answer
  • When Aditya pushes on Rachel and her bicycle, they accelerate at 0.22 m/s/s. If Aditya pushes on Rachel and her bicycle with twi
    12·1 answer
  • A ball of mass 200 g rolls along the ground at a speed of 5.2 m/s. Calculate the kinetic energy of the ball. Give your answer to
    14·1 answer
  • If the ball is 0.60 mm from her shoulder, what is the tangential acceleration of the ball? This is the key quantity here--it's a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!