answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oduvanchick [21]
2 years ago
10

A small rivet connecting two pieces of sheet metal is being clinched by hammering. Determine the impulse exerted on the rivet an

d the energy absorbed by the rivet under each blow, knowing that the head of the hammer has a weight of 1.5 lb and that it strikes the rivet with a velocity of 20 ft/s. Assume that the hammer does not rebound and that the anvil is supported by springs and (a) has an infinite mass (rigid support), (b) has a weight of 9 lb. Beer, Ferdinand.

Physics
1 answer:
kykrilka [37]2 years ago
5 0

Answer:

a) the impulse exerted by the rivet when the anvil has an infinite mass support is 0.932 lb.s

the energy absorbed by the rivet under each blow  when the anvil has an infinite mass support = 9.32 ft.lb

b) the impulse exerted by the rivet when the anvil has a support weight of 9 lb = 0.799 lb.s

the energy absorbed by the rivet under each blow when the anvil has a support weight of 9 lb is = 7.99 ft.lb

Explanation:

The first picture shows a schematic view of a free body momentum diagram of the hammer head and the anvil.

Using the principle of conservation of momentum to determine the final velocity of anvil and hammer after the impact; we have:

m_Hv_H + m_Av_A = m_Hv_2+m_Av_2

From the question given, we can deduce that the anvil is at rest;

∴ v_A = 0; then, we have:

m_Hv_H + 0 = (m_H+m_A) v_2

Making v_2 the subject of the formula; we have:

v_2 = \frac{m_Hv_H}{m_H + m_A}       ------- Equation  (1)

Also, from the second diagram; there is a representation of a free  body momentum  of the hammer head;

From the diagram;

F = impulsive force exerted on the  rivet

Δt = the change in time of application of the impulsive force

Using the principle of impulse of momentum to the hammer in the quest to determine the impulse exerted (i.e FΔt ) on the rivet; we have:

m_Hv_H - F \delta t = m_Hv_2

- F \delta t = - m_Hv_H + m_Hv_2

F \delta t = m_Hv_H - m_Hv_2

F \delta t = m_H(v_H - v_2)        ------- Equation   (2)

Using the function of the kinetic energy  of the hammer before impact T_1; we have:

T_1 = \frac{1}{2} m_Hv_H^2  -------- Equation (3)

We determine the mass of the hammer m_H  by using the formula from:

W_H = m_Hg

where;

W_H = weight of the hammer

m_H = mass of the hammer

g = acceleration due to gravity

Making m_H the subject of the formula; we have:

m_H = \frac{W_H}{g}

m_H = \frac{1.5 \ lb}{32.2 \ ft/s^2}

m_H = 0.04658 \ lb.s^2/ft

Now;

T_1 = \frac{1}{2} m_Hv_H^2

T_1 = \frac{1}{2}*(0.04658 \ lb.s^2 /ft) *(20 \ ft/s)^2

T_1 = \frac{18.632 }{2}

T_1 = 9.316 \ ft.lb

After the impact T_2 ; the final kinetic energy of the hammer and anvil can be written as:

T_2 = \frac{1}{2}(m_H +m_A)v^2_2

Recall from equation (1) ; where v_2 = (\frac{m_Hv_H}{m_H+m_A})  ; if we slot that into the above equation; we have:

T_2 = \frac{1}{2}(m_H +m_A)( \frac{m_Hv_H}{m_H+m_A})^2

T_2 = \frac{1}{2} \frac{m^2_H +v^2}{m_H+m_A}

T_2 = \frac{1}{2} ({m^2_H +v^2})(\frac{m_H}{m_H+m_A})

Also; from equation (3)

T_1 = \frac{1}{2} m_Hv_H^2; Therefore;

T_2 = T_1 (\frac{m_H}{m_H+m_A})    ----- Equation (4)

a)

Now; To calculate the impulse exerted by the rivet FΔt and the energy absorbed by the rivet under each blow  ΔT when the anvil has an infinite mass support; we have the following process

First , we need to find the mass of the anvil when we have an infinite mass support;

mass of the anvil m_A = \frac{W_A}{g}

where we replace;  W_A \ with \ \infty and g = 32.2 ft/s²

m_A =  \frac{\infty}{32.2 \ ft/s}

However ; from equation (1)

v_2 = \frac{m_H v_H}{m_H + m_A}

v_2 = \frac{0.04658*20}{0.04658+ \ \infty}

v_2 = 0

From equation (2)

F \delta t = m_H(v_H + v_2)      

F \delta t = (0.04658 lb .s^2 /ft )(20ft/s  - 0)

F \delta t = \ 0.932 \  lb.s

Therefore the impulse exerted by the rivet when the anvil has an infinite mass support is  0.932 lb.s

For the energy absorbed by the rivet ; we have:

T_2 = T_1 (\frac{m_H}{m_H+m_A} )

where;

T_1= 9.316 \ ft.lb

m_H = 0.04658 \ lb.s^2/ft

m_A = \infty

Then;

T_2 = (9.316 \ ft.lb) (\frac{0.04658\  lb.s^2/ft)}{0.04658  \ lb.s^2/ft+ \infty} )

T_2 = (9.316 \ ft.lb)* 0

T_2 = 0

Then the energy absorbed by the rivet under each blow ΔT when the anvil has an infinite mass support

ΔT = T_1 - T_2

ΔT = 9.316 ft.lb - 0

ΔT ≅  9.32 ft.lb

Therefore; we conclude that the energy absorbed by the rivet under each blow  when the anvil has an infinite mass support = 9.32 ft.lb

b)

Due to the broadness of this question, the text is more than 5000 characters, so i was unable to submit it after typing it . In the bid to curb that ; i create a document for the answer  for the part b of this question.

The attached file can be found below.

You might be interested in
A stone falls from rest from the top of a cliff. A second stone is thrown downward from the same height 2.7 s later with an init
Darina [25.2K]

Answer:4.05 s

Explanation:

Given

First stone is drop from cliff and second stone is thrown with a speed of 52.92 m/s after 2.7 s

Both hit the ground at the same time

Let h be the height of cliff and it reaches after time t

h=\frac{gt^2}{2}

For second stone

h=52.92\times \left ( t-2.7\right )+\frac{g\left ( t-2.7\right )^2}{2}---2

Equating 1 &2 we get

\frac{gt^2}{2}=52.92\times \left ( t-2.7\right )+\frac{g\left ( t-2.7\right )^2}{2}

\frac{g}{2}\left ( t-t+2.7\right )\left ( 2t-2.7\right )-\left ( t-2.7\right )52.92=0

13.23\times \left ( 2t-2.7\right )-\left ( t-2.7\right )52.92=0

26.46t-35.721-52.92t+142.884=0

t=4.05 s

4 0
2 years ago
WILL GIVE BRAINLIEST AND 100 POINTS! NEED THIS ASAP!
lorasvet [3.4K]

Answer:

6.57, 1.64, .88

Explanation:

all correct on edge

8 0
1 year ago
When numbers are very small or very large, it is convenient to either express the value in scientific notation and/or by using a
Oxana [17]

Answer:

5 mg, 5\cdot 10^{-3}g

Explanation:

First of all, let's rewrite the mass in grams using scientific notation.

we have:

m = 0.005 g

To rewrite it in scientific notation, we must count by how many digits we have to move the dot on the right - in this case three. So in scientific notation is

m=5\cdot 10^{-3}g

If  we want to convert into milligrams, we must remind that

1 g = 1000 mg

So we can use the proportion

1 g : 1000 mg = 0.005 g : x

and we find

x=\frac{(1000 mg)(0.005 g)}{1 g}=5 mg

4 0
2 years ago
Paano nakatulong ang estratehikong lokasyon ng Pilipinas sa paghubog ng ating kasayasayan?​
dangina [55]

Answer:

wow sa Canada pa talaga nagtanong btw answer ko ayy

Kasaysayan ng Pilipinas

Kasaysayan ng PilipinasAng Pilipinas ay isang bansa na makikita sa timog-silangang Asya at malapit sa dagat Pasipiko. Ito ay binubuo ng mahigit sa 7000 na isla, at nagsisilbing tirahan para sa mga Pilipino. Ang mga sumusunod ay ilan lamang sa mga paraan kung paanong nakatulong ang estratehikong lokasyon ng ating bansa sa pagbuo ng ating kasaysayan:

Kasaysayan ng PilipinasAng Pilipinas ay isang bansa na makikita sa timog-silangang Asya at malapit sa dagat Pasipiko. Ito ay binubuo ng mahigit sa 7000 na isla, at nagsisilbing tirahan para sa mga Pilipino. Ang mga sumusunod ay ilan lamang sa mga paraan kung paanong nakatulong ang estratehikong lokasyon ng ating bansa sa pagbuo ng ating kasaysayan:Dahil tayo ay napalilibutan ng anyong tubig, pangingisda ang naging pangunahing pamumuhay ng mga sinaunang Pilipino.

mahigit sa 7000 na isla, at nagsisilbing tirahan para sa mga Pilipino. Ang mga sumusunod ay ilan lamang sa mga paraan kung paanong nakatulong ang estratehikong lokasyon ng ating bansa sa pagbuo ng ating kasaysayan:Dahil tayo ay napalilibutan ng anyong tubig, pangingisda ang naging pangunahing pamumuhay ng mga sinaunang Pilipino.Noong naglayag si Ferdinand Magellan, siya ay napunta sa isa sa mga isla sa Pilipinas. Ito ang naging simula ng kolonisasyonDahil sa estratehikonglo

<em> </em>

6 0
1 year ago
The amount of steering wheel movement needed to turn will ____________ the faster you go.
Naddika [18.5K]

Answer:

The answer to your question is Decrease

4 0
1 year ago
Read 2 more answers
Other questions:
  • vector A makes equal angles with x,y and z axis. value of its components (in terms of magnitude of vector A will be?
    6·2 answers
  • A plane flying horizontally above earth’s surface at 100. meters per second drops a crate. the crate strikes the ground 30.0 sec
    9·1 answer
  • An object at rest is suddenly broken apart into two fragments by an explosion one fragment acquires twice the kinetic energy of
    14·1 answer
  • Julius competes in the hammer throw event. The hammer has a mass of 7.26 kg and is 1.215 m long. What is the centripetal force o
    15·2 answers
  • A flat rectangular loop of wire carrying a 4.0-a current is placed in a uniform 0.60-t magnetic field. the magnitude of the torq
    13·1 answer
  • When two resistors are wired in series with a 12 V battery, the current through the battery is 0.33 A. When they are wired in pa
    5·1 answer
  • A car drives at a constant speed around a banked circular track with a diameter of 136 m . The motion of the car can be describe
    12·2 answers
  • A plane has an average air speed (this is the speed the plane moves through air) of 750 mph. The plane flies a route of 5000 mil
    14·1 answer
  • Lizette works in her school’s vegetable garden. Every Tuesday, she pulls weeds for 15 minutes. Weeding seems like a never-ending
    15·2 answers
  • Which ramp requires the least amount of force?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!