Answer
given,
mass of the ball = 3 kg
swing in vertical circle with radius = 2 m
work done by the gravity = ?
work done by the tension = ?
Work done by the gravity = - m g Δh
Δ h = 2 + 2 = 4 m
Work done by the gravity =
= -117.6 J
work done by gravity is equal to -117.6 J
Work done by tension will be equal to zero.
Zero because tension is always perpendicular to velocity
work done by tension is equal to 0 J
Animal rights<span> is the idea that some, or all, </span>non-human animals<span> are entitled to the possession of their own lives and that their most basic interests—such as the need to avoid </span>suffering—should be afforded the same consideration as similar interests of human beings. <span>They maintain that animals should no longer be viewed as property or used as food, clothing, research subjects, entertainment, or beasts of burden.</span>
When light hits the boundary between two different materials, it can undergo both reflection and refraction.
Reflection is the change in the direction of the
wave that strikes the boundary between two materials.<span> It involves a change in the direction of waves when they clash with an obstacle.
Refraction involves the change in the direction of waves as they move from one medium to </span><span><span>another followed</span></span><span> by a change in speed and wavelength (this second medium should have different permitivity for the light to change its initial properties.)</span>
Hello!
A stretched spring has 5184 J of elastic potential energy and a spring constant of 16,200 N/m. What is the displacement of the spring?
0.57 m
0.64 m
0.80 m
1.25 m
Data:



For a spring (or an elastic), the elastic potential energy is calculated by the following expression:

Where k represents the elastic constant of the spring (or elastic) and x the deformation or displacement suffered by the spring.
Solving:









Answer:
The displacement of the spring = 0.8 m (or 0.80 m)
_________________________________________
I Hope this helps, greetings ... Dexteright02! =)
Answer: Mass of the planet, M= 8.53 x 10^8kg
Explanation:
Given Radius = 2.0 x 106m
Period T = 7h 11m
Using the third law of kepler's equation which states that the square of the orbital period of any planet is proportional to the cube of the semi-major axis of its orbit.
This is represented by the equation
T^2 = ( 4π^2/GM) R^3
Where T is the period in seconds
T = (7h x 60m + 11m)(60 sec)
= 25860 sec
G represents the gravitational constant
= 6.6 x 10^-11 N.m^2/kg^2 and M is the mass of the planet
Making M the subject of the formula,
M = (4π^2/G)*R^3/T^2
M = (4π^2/ 6.6 x10^-11)*(2×106m)^3(25860s)^2
Therefore Mass of the planet, M= 8.53 x 10^8kg