Answer:
126.99115 g
Explanation:
50 g at 90 cm
Stick balances at 61.3 cm
x = Distance of the third 0.6 kg mass
Meter stick hanging at 50 cm
Torque about the support point is given by (torque is conserved)

The mass of the meter stick is 126.99115 g
Answer:
D) No, since kinetic energy is not conserved.
Explanation:
Since momentum is always conserved in all collision
so in Y direction we can say


Now similarly in X direction we will have


now final kinetic energy of both puck after collision is given as


initial kinetic energy of both pucks is given as


since KE is decreased here so it must be inelastic collision
D) No, since kinetic energy is not conserved.
Answer:0
Explanation:
Given
circumference of circle is 2 m
Tension in the string 


In this case Force applied i.e. Tension is Perpendicular to the Displacement therefore angle between Tension and displacement is 



There is no picture given so I can't be really sure what color of the cable you're referring to. However, the only relationship I can think of when the power and the current is given would be: P=IV or P = I²R, where P is power, I is current, V is voltage and R is resistance. Solving both equations:
120 W = (24 A)(Voltage)
Voltage = 5 V
120 W = (24 A)²(R)
R = 0.2083 Ω
So, i think the cable would have specification of 5 Volts and 0.2083 ohms.
There could be a little bit of conduction through the air that's between the soup and your hand. But it's very small, because air is not a good conductor of heat.
It's mostly <em>convection</em> ... hot air and steam rising from the soup to your hand.
Then, of course, there HAS to be some conduction when the hot gases reach your hand ... their heat has to soak into your skin, and that's conduction.