Answer:
3.5 N
Explanation:
Let the 0-cm end be the moment point. We know that for the system to be balanced, the total moment about this point must be 0. Let's calculate the moment at each point, in order from 0 to 100cm
- Tension of the string attached at the 0cm end is 0 as moment arm is 0
- 2 N weight suspended from the 10 cm position: 2*10 = 20 Ncm clockwise
- 2 N weight suspended from the 50 cm position: 2*50 = 100 Ncm clockwise
- 1 N stick weight at its center of mass, which is 50 cm position, since the stick is uniform: 1*50 = 50 Ncm clockwise
- 3 N weight suspended from the 60 cm position: 3*60 = 180 Ncm clockwise
- Tension T (N) of the string attached at the 100-cm end: T*100 = 100T Ncm counter-clockwise.
Total Clockwise moment = 20 + 100 + 50 + 180 = 350Ncm
Total counter-clockwise moment = 100T
For this to balance, 100 T = 350
so T = 350 / 100 = 3.5 N
P = mv
p = 3.5 × 5
p = 17.5 kg .m/s
Hope this helps!
Answer:
Explanation:
Given that,
A lady falling has a final velocity of 4m/s
v = 4m/s
Mass of the lady is 60kg.
m = 60kg
Using conservation of energy, the potential energy of the body from the point where the lady is dropping is converted to the final kinetic energy of the lady.
Therefore,
P.E = K.E(final) = ½mv²
P.E = ½ × 60 × 4²
P.E = 480 J.
Answer: most effective way is to practice reduce reuse and recycle for utilisation of resources