answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetach [21]
2 years ago
8

Find the kinetic of a 0.1 kilogram toy truck moving at a speed of 1.1 meters per second

Physics
1 answer:
omeli [17]2 years ago
5 0
KE = kinetic energy
PE = potential energy
GPE = gravitational potential energy
energy is always measured in Joules (J)

KE = (0.5) times the mass times the velocity^2
square the velocity first

Mass = (KE x 2) / v^2
square the velocity first, then double the kinetic energy, then divide
mass is measured in kg

velocity = sqrt(KE x 2 / m)
velocity can be called speed, like in the the second problem
remember to find the square root after you double the KE and divide that by the mass.
for example: if after you doubled KE and divided it by the mass you got sqrt(20), the answer would be about 4.47

GPE = mass x gravitational pull (about 9.8 m/s^2 on earth) x height

height = (PE) / (g x m)
do g x m first

So for question 1:
KE = (0.5)0.1 x 1.1^2
always square the velocity first:
KE = (0.5)0.1 x 1.21
KE = 0.0605
so if you rounded it to the nearest hundreths you would get KE = 0.06 J
don't forget the unit of energy is in Joules
You might be interested in
Karen is running forward at a speed of 9 m/s. She tosses her sweaty headband backward at a speed of 20 m/s. The speed of the hea
Komok [63]
Let Karen's forward speed be considered as positive.
Therefore, before the headband is tossed backward, the speed of the headband is
V = 9 m/s

The headband is tossed backward relative to Karen at a speed of 20 m/s. Therefore the speed of the headband relative to Karen is
U = -20 m/s

The absolute speed of the headband, relative to a stationary observer is
V - U
= 9 + (-20)
= - 11 m/s

Answer:
The stationary observes the headband traveling (in the opposite direction to Karen) at a speed of 11 m/s backward.

8 0
2 years ago
Read 2 more answers
An ocean liner is cruising at 10 meters/second and is about to approach a stationary ferryboat. A parcel is released from the oc
Afina-wow [57]
The parcel will undergo projectile motion, which means that it will have motion in both the horizontal and vertical direction.

First, we determine how long the parcel will fall using:

s = ut + 1/2 at²

where s will be the height, u is the initial vertical velocity of the parcel (0), t is the time of fall and a is the acceleration due to gravity. 

5.5 = (0)(t) + 1/2 (9.81)(t)²
t = 1.06 seconds

Now, we may use this time to determine the horizontal distance covered by the parcel by using:
distance = velocity * time

The horizontal velocity of the parcel will be equal to the horizontal velocity of the cruise liner.

Distance = 10 * 1.06
Distance = 10.6 meters

The boat should be 10.6 meters away horizontally from the point of release.
4 0
2 years ago
In the 25-ft Space Simulator facility at NASA's Jet Propulsion Laboratory, a bank of overhead arc lamps can produce light of int
Ugo [173]

Answer:

a. 8.33 x 10 ⁻⁶ Pa

b. 8.19 x 10 ⁻¹¹ atm

c. 1.65 x 10 ⁻¹⁰ atm

d. 2.778 x 10 ⁻¹⁴ kg / m²

Explanation:

Given:

a.

I = 2500 W / m² , us = 3.0 x 10 ⁸ m /s

P rad = I / us

P rad  = 2500 W / m² / 3.0 x 10 ⁸ m/s

P rad = 8.33 x 10 ⁻⁶ Pa

b.

P rad = 8.33 x 10 ⁻⁶ Pa *[  9.8 x 10 ⁻⁶ atm / 1 Pa ]

P rad = 8.19 x 10 ⁻¹¹ atm

c.

P rad = 2 * I / us = ( 2 * 2500 w / m²) / [ 3.0 x 10 ⁸ m /s ]

P rad = 1.67 x 10 ⁻⁵ Pa

P₁ = 1.013 x 10 ⁵ Pa /atm

P rad = 1.67 x 10 ⁻⁵ Pa / 1.013 x 10 ⁵ Pa /atm = 1.65 x 10 ⁻¹⁰ atm

d.

P rad  = I / us

ΔP / Δt = I / C² = [ 2500 w / m² ] / ( 3.0 x 10 ⁸ m/s)²

ΔP / Δt = 2.778 x 10 ⁻¹⁴ kg / m²

3 0
2 years ago
A person drops a stone down a well and hears the echo 8.9 s later. if it takes 0.9 s for the echo to travel up the well, approxi
Temka [501]

Total time in between the dropping of the stone and hearing of the echo = 8.9 s

Time taken by the sound to reach the person = 0.9 s

Time taken by the stone to reach the bottom of the well = 8.9 - 0.9 = 8 seconds

Initial speed (u) = 0 m/s

Acceleration due to gravity (g) = 9.8 m/s^2

Time taken (t) = 8 seconds

Let the depth of the well be h.

Using the second equation of motion:

h = ut + \frac{1}{2}\times a \times t^2

h = 0 \times 8 + \frac{1}{2} \times 9.8 \times 8^2

h = 313.6 m

Hence, the depth of the well is 313.6 m

4 0
2 years ago
Seven seconds after a brilliant flash of lightning, thunder shakes the house. approximately how far was the lightning strike fro
tangare [24]
Very roughly 7,700 feet ... about 1.5 miles.
8 0
2 years ago
Other questions:
  • what shall be the effect on the least count of spherometer if number of divisions on its circular scale be doubled?
    12·1 answer
  • A circular surface with a radius of 0.057 m is exposed to a uniform external electric field of magnitude 1.44 × 104 N/C. The mag
    8·1 answer
  • An electric pump rated 1.5 KW lifts 200kg of water through a vertical height of 6m in 10 secs: way is the efficiency of the pump
    13·1 answer
  • Two red blood cells each have a mass of 9.05×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repu
    9·1 answer
  • A calorimeter has a heat capacity of 1265 J/oC. A reaction causes the temperature of the calorimeter to change from 22.34oC to 2
    14·2 answers
  • To eight significant figures, Avogadro's constant is 6.0221367×10^(23)mol−1. Which of the following choices demonstrates correct
    11·1 answer
  • Two ropes in a vertical plane exert equal-magnitude forces on a hanging weight but pull with an angle of 72.0° between them. Wha
    6·1 answer
  • A record player turntable initially rotating at 3313 rev/min is braked to a stop at a constant rotational acceleration. The turn
    12·1 answer
  • A 4.0 g string, 0.36 m long, is under tension. The string produces a 500 Hz tone when it vibrates in the third harmonic. The spe
    13·1 answer
  • A 16 g ball at the end of a 1.4 m string is swung in a horizontal circle. It revolves once every 1.09 s. What is the magnitude o
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!