Answer:
= 40J
Explanation:
The work and energy theorem says that:

where
is the work of the force,
the final kinetic energy and
the initial kinetic energy.
Addittionally, the work of the force is calculate as force multiply by distance and if the crate inittialy is at rest, the initial kinetic energy is zero, so:

where F is the force and d the distance. Then, replacing values, we get:


it means that the system gain 40J of kinetic energy.
C. refraction of light between the air and water causes the fish to appear in a different place
Answer:
7.1 Hz
Explanation:
In a generator, the maximum induced emf is given by

where
N is the number of turns in the coil
A is the area of the coil
B is the magnetic field strength
f is the frequency
In this problem, we have
N = 200


B = 0.030 T
So we can re-arrange the equation to find the frequency of the generator:

Answer:
The amount of heat required is 
Explanation:
From the question we are told that
The mass of water is 
The temperature of the water before drinking is 
The temperature of the body is 
Generally the amount of heat required to move the water from its former temperature to the body temperature is

Here
is the specific heat of water with value
So

=>
Generally the no of mole of sweat present mass of water is

Here
is the molar mass of sweat with value
=> 
=> 
Generally the heat required to vaporize the number of moles of the sweat is mathematically represented as

Here
is the latent heat of vaporization with value 
=> 
=> 
Generally the overall amount of heat energy required is

=> 
=> 
Answer:
3.5 cm
Explanation:
mass, m = 50 kg
diameter = 1 mm
radius, r = half of diameter = 0.5 mm = 0.5 x 10^-3 m
L = 11.2 m
Y = 2 x 10^11 Pa
Area of crossection of wire = π r² = 3.14 x 0.5 x 10^-3 x 0.5 x 10^-3
= 7.85 x 10^-7 m^2
Let the wire is stretch by ΔL.
The formula for Young's modulus is given by


ΔL = 0.035 m = 3.5 cm
Thus, the length of the wire stretch by 3.5 cm.