Answer:
The speed with which the baseball leaves the hand = 20.58 m/s
Explanation:
The time take to reach highest height during a projectile's flight is given by
t = (u sin θ)/g
u = initial velocity of the baseball = ?
θ = angle of throw above the horizontal
g = acceleration due to gravity = 9.8 m/s²
1.05 = (u sin 30)/9.8
u = (1.05 × 9.8)/0.5
u = 20.58 m/s
Answer:
25.82 m/s
Explanation:
We are given;
Force exerted by baseball player; F = 100 N
Distance covered by ball; d = 0.5 m
Mass of ball; m = 0.15 kg
Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.
We should note that work done is a measure of the energy exerted by the baseball player.
Thus;
F × d = ½mv²
100 × 0.5 = ½ × 0.15 × v²
v² = (2 × 100 × 0.5)/0.15
v² = 666.67
v = √666.67
v = 25.82 m/s
To solve this problem we will use the vector concept given by the cross product between two perpendicular vectors and which results in a vector perpendicular to these two. From the definition of the Magnetic Force we have to

From the property of cross product the magnetic force should point in the direction perpendicular to the plane containing the vectors v and B.
The direction of velocity is north, and the direction of the magnetic force is northeast.
This cannot be the case, as the direction of magnetic force is not perpendicular to the direction of velocity of the charge.
Therefore the correct option for the direction of the magnetic field is <em>"This situation cannot exist because of the relative orientations of the velocity and force vectors" </em>
P 1 = 101,325 Pa (atmospheric pressure)
Milk has almost same density as water: (Rho)= 1,000 kg /m³
P 2 = 101,325 Pa + 1,000 kg/m³ · 9.81 m/s² · 0.1 m = 102,306 Pa
The hydrostatic equation:
P 1 + (Rho)v1² / 2 = P 2 + (Rho)·g·h2
101,325 + 1,000 v1²/2 = 102,306 + 1000 · 9.81 · 0.1
500 v 1² = 102,306 + 981 - 101,325
v 1² = 3.924
v 1 = √ 3.924
v 1 = 1.98 m/s
The initial velocity of outflow is 1.98 m/s.