answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rosijanka [135]
2 years ago
15

A simple circuit within a laptop has a single resistor with a resistance of 0.1 Ω and requires a current of 50 mA. Select the vo

ltage that would allow the computer to function correctly.
A. 5 V
B. 50 V
C. 500 mV
D. 5 mV
Physics
2 answers:
Butoxors [25]2 years ago
8 0

Answer:

D

Explanation:

jolli1 [7]2 years ago
6 0

Voltage = (current) x (resistance)

The voltage across THIS RESISTOR is

V = (0.050 A) x (0.1 ohm)

V = 0.005 v (5 millivolts)


You might be interested in
Official (Closed) - Non Sensitive
Pavlova-9 [17]

Answer:

The minimum running time is 319.47 s.

Explanation:

First we find the distance covered and time taken by the train to reach its maximum speed:

We have:

Initial Speed = Vi = 0 m/s    (Since, train is initially at rest)

Final Speed = Vf = 29.17 m/s

Acceleration = a = 0.25 m/s²

Distance Covered to reach maximum speed = s₁

Time taken to reach maximum speed = t₁

Using 1st equation of motion:

Vf = Vi + at₁

t₁ = (Vf - Vi)/a

t₁ = (29.17 m/s - 0 m/s)/(0.25 m/s²)

t₁ = 116.68 s

Using 2nd equation of motion:

s₁ = (Vi)(t₁) + (0.5)(a)(t₁)²

s₁ = (0 m/s)(116.68 s) + (0.5)(0.25 m/s²)(116.68 s)²

s₁ = 1701.78 m = 1.7 km

Now, we shall calculate the end time and distance covered by train, when it comes to rest on next station.

We have:

Final Speed = Vf = 0 m/s    (Since, train is finally stops)

Initial Speed = Vi = 29.17 m/s     (The train must maintain max. speed for min time)

Deceleration = a = - 0.7 m/s²

Distance Covered to stop = s₂

Time taken to stop = t₂

Using 1st equation of motion:

Vf = Vi + at₂

t₂ = (Vf - Vi)/a

t₂ = (0 m/s - 29.17 m/s)/(- 0.7 m/s²)

t₂ = 41.67 s

Using 2nd equation of motion:

s₂ = (Vi)(t₂) + (0.5)(a)(t₂)²

s₂ = (29.17 m/s)(41.67 s) + (0.5)(- 0.7 m/s²)(41.67 s)²

s₂ = 607.78 m = 0.6 km

Since, we know that the rest of 7 km, the train must maintain the maximum speed to get to the next station in minimum time.

The remaining distance is:

s₃ = 7 km - s₂ - s₁

s₃ = 7 km - 0.6 km - 1.7 km

s₃ = 4.7 km

Now, for uniform speed we use the relation:

s₃ = vt₃

t₃ = s₃/v

t₃ = (4700 m)/(29.17 m/s)

t₃ = 161.12 s

So, the minimum running time will be:

t = t₁ + t₂ + t₃

t = 116.68 s + 41.67 s + 161.12 s

<u>t = 319.47 s</u>

5 0
2 years ago
Aaron Agin nodded off while driving home from play practice this past Sunday evening. His 1500-kg car hit a series of guardrails
Inessa [10]

Answer: 6.48m/s

Explanation:

First, we know that Impulse = change in momentum

Initial velocity, u = 19.8m/s

Let,

Velocity after first collision = x m/s

Velocity after second collision = y m/s

Also, we know that

Impulse = m(v - u). But then, the question said, the guard rail delivered a "resistive" impulse. Thus, our impulse would be m(u - v).

5700 = 1500(19.8 - x)

5700 = 29700 - 1500x

1500x = 29700 - 5700

1500x = 24000

x = 24000/1500

x = 16m/s

Also, at the second guard rail. impulse = ft, so that

Impulse = 79000 * 0.12

Impulse = 9480

This makes us have

Impulse = m(x - y)

9480 = 1500(16 -y)

9480 = 24000 - 1500y

1500y = 24000 - 9480

1500y = 14520

y = 14520 / 1500

y = 9.68

Then, the velocity decreases by 3.2, so that the final velocity of the car is

9.68 - 3.2 = 6.48m/s

5 0
1 year ago
Suppose a rectangular piece of aluminum has a length D, and its square cross section has the dimensions W XW, where D (W x W) to
Ludmilka [50]

Answer:

R₂ / R₁ = D / L

Explanation:

The resistance of a metal is

        R = ρ L / A

Where ρ is the resistivity of aluminum, L is the length of the resistance and A its cross section

We apply this formal to both configurations

Small face measurements (W W)

The length is

         L = W

Area  

         A = W W = W²

        R₁ = ρ W / W² = ρ / W

Large face measurements (D L)

       Length L = D= 2W

       Area     A = W L

     R₂ = ρ D / WL = ρ 2W / W L = 2 ρ/L

The relationship is

    R₂ / R₁ = 2W²/L

6 0
2 years ago
A circular wire loop lies inside a region of space containing a magnetic field. The direction of the magnetic field is out of th
jekas [21]

Answer:

clockwise

Explanation:

According to the law given by Lenz, known as the Lenz law, it is said that a current induced in the circuit which is due to the change in the magnetic field and is so directed so as to oppose the change in the flux and to apply a force in the opposite direction if the force.

Here, as the magnetic field is directed out of the screen, the current flows in the direction which is clockwise in the loop and it opposes the increasing magnetic field.

The clockwise induced current will produce magnetic field in to the screen.

6 0
1 year ago
NEED ANSWER PLEASE!!!!
olganol [36]

Answer:A, Concave

Explanation:

3 0
2 years ago
Other questions:
  • A satellite orbiting above the earth needs no power source to keep orbiting the earth. The best explanation for this involves th
    11·2 answers
  • A roller of radius 12.5 cm turns at 14 revolutions per second. What is the linear velocity of the roller in meters per second?
    11·2 answers
  • Hanging by a thread. Two metal spheres hang from nylon threads and attract each other when brought close together. (i) What can
    13·1 answer
  • Two masses hang below a massless meter stick. Mass 1 is located at the 10cm mark with a weight of 15kg, while mass 2 is located
    13·1 answer
  • A spaceship of frontal area 10 m2 moves through a large dust cloud with a speed of 1 x 106 m/s. The mass density of the dust is
    6·1 answer
  • A car enters a 300-m radius horizontal curve on a rainy day when the coefficient of static friction between its tires and the ro
    7·1 answer
  • A nonuniform, 80.0-g, meterstick balances when the support is placed at the 51.0-cm mark. At what location on the meterstick sho
    6·1 answer
  • A penny is placed on a rotating turntable. Where on the turntable does the penny require the largest centripetal force to remain
    7·1 answer
  • A rigid, uniform bar with mass mmm and length bbb rotates about the axis passing through the midpoint of the bar perpendicular t
    10·1 answer
  • Jo, Daniel and Helen are pulling a metal ring. Jo pulls with a force of 100N in one direction and Daniel with a force of 140N in
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!