Answer:
The speed of light in air is 2.996x10⁸ m/s, and polystyrene is 1.873x10⁸ m/s.
Explanation:
To find the speed of light in air and in polystyrene we need to use the following equation:
Where:
: is the speed of light in the medium
n: is the refractive index of the medium
In air:
In polystyrene:
Therefore, the speed of light in air is 2.996x10⁸ m/s, and polystyrene is 1.873x10⁸ m/s.
I hope it helps you!
To solve this problem we will use the Newtonian theory about the speed of a body in space for which the speed of a body in the orbit of a planet is summarized as:

Where,
G = Gravitational Universal Constant
M = Mass of Planet
r = Radius of the planet ('h' would be the orbit from the surface)
The escape velocity is

Through this equation we can find the mass of the Planet in function of the distance, therefore



The orbital velocity is





The time period of revolution is,




Therefore the orbital period of the satellite is closes to 1 hour and 12 min
Answer:
(a) The magnitude of the lift force is 52144.71 N, approximately.
(b) The magnitude of the air resistance force opposing the movement is 17834.54 N, approximately.
Explanation:
Since the helicopter is moving horizontally at a constant velocity, we can assume that the net force acting on it is zero, then
(a) in the vertical direction we have
.
(b) Now horizontally,
Answer:
The speed of the Jocko and the ball move after he catches the ball is 0.75 m/s.
Explanation:
Given that,
Mass if Jocko, m = 60 kg
Mass of the ball, m' = 20 kg
Speed of the ball, v = 3 m/s
Let V is the speed of Jocko and the ball move after he catches the ball. The momentum of the system remains conserved. Using the conservation of momentum as :

So, the speed of the Jocko and the ball move after he catches the ball is 0.75 m/s.