<em>12,25 km/h</em>
<em>≈ 3,4 m/s </em>
<em>v = d/t</em>
<em>= 12250m/h</em>
<em>= 12,25km/h</em>
<em>or</em>
<em>v = d/t</em>
<em>= 12250m/h</em>
<em>1h = 60m×60s = 3600s</em>
<em>= 12250m/3600s</em>
<em>≈ 3,4 m/s </em>
A thrust fault is a reverse fault with an extremely high dip (close to 90°). This is the false statement.
Answer: Option D
<u>Explanation:</u>
Faults are the fracture or fracture zone occurring on the rocks. These fractures can travel through the rocks leading to massive destruction. So, depending upon the direction of their travel, the faults can be classified as normal, reverse and strike slip fault. Also, the angle of dip along the fault is one of the important criteria for determining the type of faults.
There is dip-slip fault which has its movement along the vertical fault plane while the strike slip fault will be in horizontal direction. Similarly, an oblique fault will be acting in both vertical and the horizontal direction. So, the fourth statement related to thrust fault is false as in reverse fault or thrust fault the dip will be shallow and not high.
If we are talking on the force being exerted by a segment of a rope of lenght R on the right on a point M which is being also pulled from the Left by a segment of rope R as shown in the figure attached. Then we invoke Newton's Third Law:
"Any force exerted by an object (in this case a segment of the rope) also suffers a equal and opposite force".
If we pick

whis is the tension exerted by the right segment then the left segment will also exert an equal and opposite force so we have that
Explanation:
Below is an attachment containing the solution.