answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ehidna [41]
2 years ago
6

The electric field inside a cell membrane is 8.0 MN/C. Part A What's the force on a singly charged ion in this field?

Physics
1 answer:
dlinn [17]2 years ago
7 0

Answer:

Force on the singly charged ion will be 12.6\times 10^{-13}N

Explanation:

We have given electric field E = 8 MN/C

So electric field in N/C will be E=8MN/C=8\times 10^6N/C

It is given that ion so charge on ion will be equal to e=1.6\times 10^{-19}C

We have to find the electric force on the ion

Electric force is equal to F=qE, here q is charge and E is electric field

So force on the charge will be equal to F=8\times 10^6\times 1.6\times 10^{-19}=12.6\times 10^{-13}N

So force on the singly charged ion will be 12.6\times 10^{-13}N

You might be interested in
The speed v of a sound wave traveling in a medium that has bulk modulus b and mass density ρ (mass divided by the volume) is v=b
PilotLPTM [1.2K]

As it is given that Bulk modulus  and density related to velocity of sound

v = \sqrt{\frac{B}{\rho}}

by rearranging the equation we can say

B = \rho * v^2

now we need to find the SI unit of Bulk modulus here

we can find it by plug in the units of density and speed here

B = \frac{kg}{m^3} * (\frac{m}{s})^2

so SI unit will be

B = \frac{kg}{m* s^2}

SO above is the SI unit of bulk Modulus

3 0
2 years ago
Irrigation channels that require regular flow monitoring are often equipped with electromagnetic flowmeters in which the magneti
san4es73 [151]

A) 1.36\cdot 10^{-4}T

The magnetic field at the center of a coil of N turns is given by

B=\frac{\mu_0 N I}{2R}

where

I is the current in the coil

N is the number of turns

R is the radius of the coil

Here we have

I = 6.5 A is the current in the coil

N = 100 is the number of turns

R=\frac{6.0 m}{2}=3.0 m is the radius of the coil

Substituting,

B=\frac{(4\pi \cdot 10^{-7} H/m)(100)(6.5 A)}{2(3.0 m)}=1.36\cdot 10^{-4}T

B) The force points north

The direction of the force on a positive ion in water can be found by using the right-hand rule. In fact, we have:

- Index finger: direction of motion of the ion --> towards east

- Middle finger: direction of magnetic field --> downward

- Thumb: direction of the force --> towards north

So, the force points north.

C) 3.26\cdot 10^{-23}N

The magnitude of the magnetic force on a charged particle moving perpendicularly to the field is

F=qvB

where

q is the charge of the particle

v is the velocity

B is the magnitude of the magnetic field

In this case, we have

q=+e=1.6\cdot 10^{-19} C is the charge

v=1.5 m/s is the velocity

B=1.36\cdot 10^{-4}T is the magnetic field strength

Substituting,

F=(1.6\cdot 10^{-19} C)(1.5 m/s)(1.36\cdot 10^{-4}T)=3.26\cdot 10^{-23}N

8 0
2 years ago
Two satellites revolve around the Earth. Satellite A has mass m and has an orbit of radius r. Satellite B has mass 6m and an orb
melomori [17]

Answer:

aaaaa

Explanation:

M = Mass of the Earth

m = Mass of satellite

r = Radius of satellite

G = Gravitational constant

F=G\frac{Mm}{r^2}

F=G\frac{M6m}{r_b^2}

G\frac{Mm}{r^2}=G\frac{M6m}{r_b^2}\\\Rightarrow \frac{1}{r^2}=\frac{6}{r_b^2}\\\Rightarrow \frac{r_b^2}{r^2}=6\\\Rightarrow \frac{r_b}{r}=\sqrt{6}\\\Rightarrow r_b=2.44948r

r_b=2.44948r

8 0
2 years ago
A square conducting loop 8.4 cm on a side is placed in a uniform B-field so that the plane of the loop is perpendicular to the d
arsen [322]

Answer:

Explanation:

area of square loop A = side²

= 8.4² x 10⁻⁴

A = 70.56 x 10⁻⁴ m²

when it is converted into rectangle , length = 14.7  , width = 2.1

area = length x width

= 14.7 x 2.1 x 10⁻⁴

= 30.87 x 10⁻⁴ m²

Let magnetic field be B

Change in flux = magnetic field x change in area

= B x ( 70.56 x 10⁻⁴ - 30.87 x 10⁻⁴ )

= 39.69 x 10⁻⁴ B

rate of change of flux = change in flux / time taken

= 39.69 x 10⁻⁴ B  / 6.5 x 10⁻³

= 6.1 x 10⁻¹ B

emf induced = 6.1 x 10⁻¹ B

6.1 x 10⁻¹ B  = 14.7 ( given )

B = 2.41 x 10

= 24.1 T

B ) magnetic flux is decreasing , so it needs to be increased as per Lenz's law . Hence current induced will be anticlockwise so that additional  magnetic flux is induced out of the page.

4 0
2 years ago
A radioactive source has a half life of 80s.
Burka [1]
Lets make the original number of nuclides at the start is 100.

If 7/8 of 100 is decayed, that means 87.5 decayed.

\frac{7}{8} \times 100 = 87.5

And there is 1/8 left of the number of nuclide 100. Which is 12.5

100 - 87.5 =12.5

\frac{1}{8} \times 100 = 12.5

How many Half lifes passed for 100 to become 12.5 is 3 Half-Lives.

100 \div 2 \div 2 \div 2 = 12.5

Each Half-Life is 80 seconds so there is 240 seconds

3 \times 80 = 240The answer is that it takes 240 seconds.
6 0
2 years ago
Other questions:
  • What is the acceleration of a ball rolling down a ramp that starts from rest and travels 0.9 m in 3 s?
    15·1 answer
  • A fishing boat accidentally spills 3.0 barrels of diesel oil into the ocean. each barrel contains 42 gallons. if the oil film on
    12·1 answer
  • The angle θ is slowly increased. Write an expression for the angle at which the block begins to move in terms of μs.
    7·1 answer
  • In a 1.25-T magnetic field directed vertically upward, a particle having a charge of magnitude 8.50μC and initially moving north
    12·1 answer
  • the steel bed of a suspension bridge is 200m long at 20 C. If the extremes of temperature to which it might be exposed are -30 C
    9·1 answer
  • A kickball is kicked straight up at a speed of 22.4m/s. how high does it go
    8·1 answer
  • Which of the following relationships must be true according to the laws of series and parallel connections? (Select only relatio
    5·1 answer
  • An astronaut holds a rock 100m above the surface of Planet XX. The rock is then thrown upward with a speed of 15m/s, as shown in
    11·1 answer
  • The energy transferred to the water in 100 seconds was 155 000 J. specific heat capacity of water = 4200 J/kg °C
    6·2 answers
  • Plz help The momentum of a baseball changes dramatically when struck by a bat.Momentum of the ball is not conserved. The best ex
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!