answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scilla [17]
2 years ago
13

A solar heated house loses about 5.4 × 107 cal through its outer surfaces on a typical 24-h winter day.

Physics
1 answer:
mojhsa [17]2 years ago
4 0

Answer:

C

Explanation:

Q=mcΔθ

Q=quantity of heat   , m= mass of the storage rock

Δθ= temperature change.

m= Q/(cΔθ)

Q=5.410^{7}

Δθ=62°C-20°C

 =42°C

c=0.21cal/g.°C

m=\frac{5.4*10^{7} }{0.21*42} \\\\m=6122448.98g\\

m≈6100000g

m≈6100kg

You might be interested in
A proton and an electron are held in place on the x axis. The proton is at x = -d, while the electron is at x = +d. They are rel
Over [174]
The protons and electrons are held in place on the x axis.
The proton is at x = -d and the electron is at x = +d. They are released at the same time and the only force that affects movement is the electrostatic force that is applied on both subatomic particles. According to Newton's third law, the force Fpe exerted on protons by the electron is opposite in magnitude and direction to the force Fep exerted on the electron by the proton. That is, Fpe = - Fep. According to Newton's second law, this equation can be written as
                               Mp * ap = -Me * ae
where Mp and Me are the masses, and ap and ae are the accelerations of the proton and the electron, respectively. Since the mass of the electron is much smaller than the mass of the proton, in order for the equation above to hold, the acceleration of the electron at that moment must be considerably larger than the acceleration of the proton at that moment. Since electrons have much greater acceleration than protons, they achieve a faster rate than protons and therefore first reach the origin.
6 0
2 years ago
A 2-kg wood block is pulled by a string across a rough horizontal floor. The string exerts a tension force of 30 N on the block
Luden [163]

Answer:

Work done, W = 84.57 Joules

Explanation:

It is given that,

Mass of the wooden block, m = 2 kg

Tension force acting on the string, F = 30 N

Angle made by the block with the horizontal, \theta=20^{\circ}

Distance covered by the block, d = 3 m

Let W is the work done by the tension force. It can be calculated as :

W=F\ cos\theta\times d

W=30\times cos(20)\times 3

W = 84.57 Joules

So, the work done by the tension force is 84.57 Joules. Hence, this is the required solution.

7 0
2 years ago
An experiment is conducted in which red light is diffracted through a single slit. Listed below are alterations made, one at a t
Xelga [282]

Answer:

B. The distance between the slits and the screen is halved.

C. The slit width is doubled.

D. A green, rather than red, light source is used.

E. The experiment is conducted in a water-filled tank.

Explanation:

As we know that the position of first minimum is given as

a sin\theta = N\lambda

so we have

\theta = sin^{-1}(\fracN\lambda}{a})

so width of minimum is given as

w = L\times sin^{-1}(\fracN\lambda}{a})

now if we need to decrease the angular position of minimum

1). so we can decrease the distance of screen from the slit

2). we can decrease the wavelength

3). We can increase the width of the slit

So correct answer will be

B. The distance between the slits and the screen is halved.

C. The slit width is doubled.

D. A green, rather than red, light source is used.

E. The experiment is conducted in a water-filled tank.

6 0
2 years ago
What is the formula that can be used to find velocity if kinetic energy and mass are known?
viva [34]
The formula for kinetic energy is \frac{1}{2}m\Delta v^2. Thus, the equation for velocity is v=   \sqrt{ \frac{2TotalKineticEnergy}{m} }. 
6 0
2 years ago
Read 2 more answers
Ocean waves are observed to travel to the right along the water surface during a developing storm. A Coast Guard weather station
Nuetrik [128]

Answer:

The amplitude is  2.3 m

The Wavelength is 8.6 m

The frequency is 0.16 Hz

The time period is 6.25 sec

The equation that governs the behavior is  Y=(2.3)sin[(\frac{2\pi}{8.6} )x -(\frac{2\pi}{6.2} )t]

Explanation:

The explanation is shown on the first uploaded image

6 0
2 years ago
Other questions:
  • Two extremely large nonconducting horizontal sheets each carry uniform charge density on the surfaces facing each other. The upp
    5·1 answer
  • a light bulb is 4.1 m from a surface. how much luminous flux must the bulb produce if the illuminance required is 22 lx?
    12·1 answer
  • A rock is thrown horizontally at a speed of 5.0 m/s from the top of a cliff 64.7 m high. The rock hits the ground 18.0 m from th
    14·2 answers
  • You are asked to design a spring that will give a 1160-kg satellite a speed of 2.50 m>s relative to an orbiting space shuttle
    10·1 answer
  • A bathtub contains 65 gallons of water and the total weight of the tub and water is approximately 931.925 pounds. You pull the p
    15·1 answer
  • To get a feeling for inertial forces discuss the familiar cases of accelerating in a car in a straight line while increasing or
    6·1 answer
  • You are attending a county fair with your friend from your physics class. While walking around the fairgrounds, you discover a n
    12·1 answer
  • The fundamental frequency of a resonating pipe is 150 Hz, and the next higher resonant frequencies are 300 Hz and 450 Hz. From t
    11·1 answer
  • 1. Describe the methods by which an electric potential develops in primary cells and dry cells.
    13·1 answer
  • Rama's weight is 40kg. She is carrying a load of 20 kg up to a height of 20 m . What work does she do?​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!