Answer:

Explanation:
The centripetal acceleration is given by:

Here v is the linear speed and r is the radius of the circular motion. v is defined as the distance traveled to make one revolution (
) divided into the time takes to make one revolution, that is, the period (T).

Replacing (2) in (1) and replacing the given values:

Newtons second law.. <span>The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.</span>
Answer:
to the right.
to in the upwards direction.
Explanation:
In order to solve this problem, we must first start by drawing a diagram of the situation. (See attached diagram).
So, remember that a force is determined by multiplying the mass of the parcticle by its acceleration:
F=ma
so in order to find the components of the force, we need to start by finding its acceleration.
Acceleration is found by using the following formula:

so we can subtract the two vectors, like this:

which yields:

or:

so now I can find the components of the force:

which yields:
F=(2.31i+2.1j)N
so the components of the force are:
to the right.
to in the upwards direction.
The mechanical advantage is defined as the ratio between the force produced by a machine and the force applied in input:

For the crowbar of the problem, the force applied in input is 40 N, while the force produced in output is equal to the weight of the rock that is lifted, so 400 N. Therefore, the mechanical advantage is
Answer:
28.6260196842 m
Explanation:
Let h be the height of the building
t = Time taken by the watermelon to fall to the ground
Time taken to hear the sound is 2.5 seconds
Time taken by the sound to travel the height of the cliff = 2.5-t
Speed of sound in air = 340 m/s
For the watermelon falling

For the sound
Distance = Speed × Time

Here, distance traveled by the stone and sound is equal


The time taken to fall down is 2.4158 seconds

Height of the buidling is 28.6260196842 m