answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olasank [31]
2 years ago
13

Calculate the volume occupied by 25.2 g of co2 at 0.84 atm and 25°c. r = 0.08206 latm/kmol.

Physics
1 answer:
Nitella [24]2 years ago
5 0

Answer:

16.68 L

Explanation:

First of all, we need to calculate the number of moles corresponding to 25.2 g of CO2.

The molar mass of CO2 is 44.01 g/mol, therefore the number of moles is:

n=\frac{m}{M_m}=\frac{25.2 g}{44.01 g/mol}=0.573 mol

So now we can use the ideal gas equation:

pV=nRT

where:

p = 0.84 atm is the gas pressure

V = ? is the volume

n = 0.573 mol is the number of moles

R = 0.08206 L atm / K mol is the gas constant

T = 25°c = 298 K is the gas temperature

Substituting into the equation and re-arranging it, we find the volume:

V=\frac{nRT}{p}=\frac{(0.573 mol)(0.08206 Latm/Kmol)(298 K)}{0.84 atm}=16.68 L

You might be interested in
In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water d
Alexxandr [17]

Answer:

a) a = g / 3

b) x (3.0) = 14.7 m

c) m (3.0) = 29.4 g

Explanation:

Given:-

- The following differential equation for (x) the distance a rain drop has fallen has the form:

                             x*g = x * \frac{dv}{dt} + v^2

- Where,                v = Speed of the raindrop

- Proposed solution to given ODE:

                             v = a*t

Where,                  a = acceleration of raindrop

Find:-

(a) Using the proposed solution for v find the acceleration a.

(b) Find the distance the raindrop has fallen in t = 3.00 s.

(c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s.

Solution:-

- We know that acceleration (a) is the first derivative of velocity (v):

                             a = dv / dt   ... Eq 1

- Similarly, we know that velocity (v) is the first derivative of displacement (x):

                            v = dx / dt  , v = a*t ... proposed solution (Eq 2)

                             v .dt = dx = a*t . dt

- integrate both sides:

                             ∫a*t . dt = ∫dt

                             x = 0.5*a*t^2  ... Eq 3

- Substitute Eq1 , 2 , 3 into the given ODE:

                            0.5*a*t^2*g = 0.5*a^2 t^2 + a^2 t^2

                                                = 1.5 a^2 t^2

                            a = g / 3

- Using the acceleration of raindrop (a) and t = 3.00 second and plug into Eq 3:

                           x (t) = 0.5*a*t^2

                           x (t = 3.0) = 0.5*9.81*3^2 / 3

                           x (3.0) = 14.7 m  

- Using the relation of mass given, and k = 2.00 g/m, determine the mass of raindrop at time t = 3.0 s:

                           m (t) = k*x (t)

                           m (3.0) = 2.00*x(3.0)

                           m (3.0) = 2.00*14.7

                           m (3.0) = 29.4 g

6 0
2 years ago
While ice skating, you unintentionally crash into a person. Your mass is 60 kg, and you are traveling east at 8.0 m/s with respe
kaheart [24]

Answer:

6.18 m/s

Explanation:

Roller skate collision

The final direction of the system (me=M + person=P) velocity vector is at an angle; Ф, to the direction running south to north. Apply the component form of the impulse-momentum equation, firstly;

x-axis component form (+x east);

P_{Miy} + p_{Piy} + j_{y}= P_{Mfy} +P_{pfy}

m_{Mu_{Miy}+ m_{pu_{piy}}+0=(m_{M}+m_{p})V_{f} sinФ

60 ·8 + 0 = (60 + 80)V_{f}sinФ

480 = 140V_{f} sinФ................. (I)

y-axis component form (+y north);

P_{Mix} + p_{Pix} + j_{x} = P_{Mfx}+ P_{pfx}

m_{Mu_{Mix}+ m_{pu_{pix}}+0=(m_{M}+m_{p})V_{f} cosФ

0 + 80.9 = (60 + 80)V_{f}cosФ

 720= 140V_{f}cosФ

140Vf=\frac{720}{cos}Ф......................................(2)

 Substituting (2) into (1) to give the angle;

 480 = 720tan Ф

Ф = arctan(0.67) =33.69°.......................(3)

Evaluating (1) with (3) gives the velocity magnitude

480 = 140Vfsin 33.69°

Vf=6.18 m/s

note 1:

This angle corresponds to a direction; 90° - 33.69° = 56.31° north of east.

 

7 0
2 years ago
Calculate the mass of the air contained in a room that measures 2.50 m x 5.50 m x 3.00 m if the density of air is 1.29 g/dm3.53.
Law Incorporation [45]

Answer:

5.32\cdot 10^4 g

Explanation:

First of all, we need to find the volume of the room, which is given by

V=2.50 m \cdot 5.50 m \cdot 3.00 m =41.3 m^3

Now we  can find the mass of the air by using

m=dV

where

d=1.29 g/dm^3 is the density of the air

V=41.3 m^3 = 41,300 dm^3 is the volume of the room

Substituting,

m=(1.29)(41300)=5.32\cdot 10^4 g

6 0
2 years ago
According to the article, which pattern of brain waves are most conducive to studying new information?
sashaice [31]
Alpha brain waves are those most conducive to studying new information.

When consciously alert, we generally function along a beta brain rhythm. In diminishing this rhythm to alpha, we transition into a state of physical and mental relaxation that is ideal for learning new information and storing facts and  data. Studies have shown that the effect of decreasing brain rhythm is linked to feelings of increased mental clarity and remembrance. As it is a prime condition for synthetic thought and creativity, it becomes easier to visualize and create associations (information is better learned and absorbed by using such study methods). 

Hope this helps! :)
7 0
1 year ago
The eiffel tower has a mass of 7.3 million kilograms and a height of 324 meters. its base is square with a side length of 125 me
uranmaximum [27]

Since the tower base is square with a side length of  125 m,

Therefore,

(125\ m)^2+ (125\ m)^2=31250 m^2

Square root of 31250 = 176.776953 (Diameter) , so this is the diameter of the cylinder to enclose it, and radius, r = 88.38834765 m and height, h = 324 m.

The volume of cylinder,

=\pi r^2h=3.14(88.38834765 m)^2\times 324 m =7948168.803\ m^3

Thus, the mass of the air in the cylinder,

=1.225\ kg/m^3 \times 7948168.803\ m^3=9736506.78\ kg

Hence, the mass of the air in the cylinder is this more  than the mass of the tower.


4 0
1 year ago
Other questions:
  • a 2 meter tall astronaut standing on mars drops her glasses from her nose. how long will the astronaut have before he hits the g
    13·1 answer
  • An object which has a mass of 70 kg is sitting on a cliff 10 m high. Calculate the object's Potential energy. Given g = 10m/s2
    11·1 answer
  • A 75 kg skydiver can be modeled as a rectangular "box" with dimensions 20 cm * 40 cm * 180 cm. what is his terminal speed if he
    9·1 answer
  • To practice Problem-Solving Strategy 23.2 for continuous charge distribution problems. A straight wire of length L has a positiv
    7·1 answer
  • What is the instantaneous velocity of a freely falling object 9.0 s after it is released from a position of rest? Express your a
    5·1 answer
  • The motion of a particle connected to a spring is described by x = 10 sin (pi*t). At
    8·1 answer
  • An individual white LED (light-emitting diode) has an efficiency of 20% and uses 1.0 W of electric power. a. How many LEDs must
    8·1 answer
  • What is the first velocity of the car with four washers at
    5·2 answers
  • You are flying a hang glider at 14 mph in the northeast direction (45°). The wind is blowing at 4 mph from due north.
    11·1 answer
  • For the first 10 seconds a squirrel runs 3 m/s to look for an acorn. The next 5 seconds he eats an acorn that he finds. Afterwar
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!