answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
boyakko [2]
2 years ago
13

THE RELATIVE ANGLE AT THE KNEE CHANGES FROM 0O TO 85O DURING THE KNEE FLEXION PHASE OF A SQUAT EXERCISE. IF 10 COMPLETE SQUATS A

RE PERFORMED, WHAT IS THE TOTAL ANGULAR DISTANCE AND THE TOTAL ANGULAR DISPLACEMENT UNDERGONE AT THE KNEE?
Physics
1 answer:
Mice21 [21]2 years ago
5 0

Answer: angular distance = 1700° and 29.7 rad

      also the angular displacement = 0

Explanation:

To explain this, i will give a breakdown of this works.

we are asked to find both the angular distance and displacement the knee undergo.

Ok to get the distance of the knee, we would first take note that for one to squat down and get back up, the knee would travel through 85° of flexion to gpo down, and also through another 85° of extension to return standing (upright). So, the actual angular distance of the squat is 170°.

taking ten squats, the knee would have to go through 170° motion times 10 i.e;

10 * 170° = 1700°

Therefore the angulaar distance is 1700°

now converting this distance to radians since we will be required to have our answer in both degree and rad.

Given that 2pi = 360°, it means that one degree will give 57.3°;

∅ (rad) = ∅ (deg) * 2π/360°

∅ (rad) = 1170° * 2π/360°  = 29.7 rad

∅ (rad) = 29.7 rad

b. For the other part, let us remember that angular displacement is equal to angular distance divided by time, so the angular displacement displacement of the knee will be zero, because the knee's position at the final third will be the same as the initial position.

cheers i hope this helps!!!!

π

You might be interested in
Derive an expression for the total mechanical energy of the system as the monkey reaches the top of the motion, Etop, in terms o
ipn [44]

Answer:

U =  0.5 * k *(x + d - h_max)^2 + m*g*h_max

Explanation:

Given:

- The extension in spring @ equilibrium = x m

- The spring constant = k

- The amount of distance pulled down = d

- mass of the toy = m

Find:

- The total mechanical energy E_top at the top position h_max in terms of the available variables.

Solution:

- First we need to determine the types of Energy that are in play:

- The Elastic potential Energy E_p in a spring is given:

                              E_p: 0.5 * k * (ext)

- In our case when the toy at the top most position h_max will have a net extension ext, by summing displacement of spring:

             ext = Equilibrium + distance pulled - h_max = (x + d - h_max)

Hence, the elastic potential energy will be:

                              E_p = 0.5 * k *(x + d - h_max)^2

- The gravitational potential energy E_g is given by:

                              E_g = m*g*h_max

Where, bottom most position is taken as reference (datum).

- The kinetic Energy E_k is given by:

                              E_k = 0.5*m*v_top^2

- Since we know that the maximum height is reached when velocity is zero

Hence,                   E_k = 0.5*m*0^2 = 0.

The total Energy of the system U is sum of all energies and play:

                               U = E_p + E_k + E_g

                               U =  0.5 * k *(x + d - h_max)^2 + m*g*h_max

8 0
2 years ago
If an electric wire is allowed to produce a magnetic field no larger than that of the Earth (0.55 x 10-4 T) at a distance of 25
antiseptic1488 [7]

we are given in the problem the following dimensions or specifications 
B = 0.000055 T r = 0.25 m constant mu0 = 4*pi*10-7 

The formula that is applicable from physics is 
B = mu0*I/(2*pi*r) I = 2*B*pi*r/mu0 I = 68.75 Amperes 
7 0
2 years ago
Read 2 more answers
A team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing e
Blizzard [7]
<h2>Answer: 117.626m/s</h2>

Explanation:

The escape velocity V_{esc} is given by the following equation:

V_{esc}=\sqrt{\frac{2GM}{R}}   (1)

Where:

G is the Gravitational Constant and its value is 6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}

M  is the mass of the asteroid

R  is the radius of the asteroid

On the other hand, we know the density of the asteroid is \rho=3.84(10)^{8}g/m^{3} and its volume is V=2.17(10)^{12}m^{3}.

The density of a body is given by:

\rho=\frac{M}{V}  (2)

Finding M:

M=\rhoV=(3.84(10)^{8} g/m^{3})(2.17(10)^{12}m^{3})  (3)

M=8.33(10)^{20}g=8.33(10)^{17}kg  (4)  This is the mass of the spherical asteroid

In addition, we know the volume of a sphere is given by the following formula:

V=\frac{4}{3}\piR^{3}   (5)

Finding R:

R=\sqrt[3]{\frac{3V}{4\pi}}   (6)

R=\sqrt[3]{\frac{3(2.17(10)^{12}m^{3})}{4\pi}}   (7)

R=8031.38m   (8)  This is the radius of the asteroid

Now we have all the necessary elements to calculate the escape velocity from (1):

V_{esc}=\sqrt{\frac{2(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(8.33(10)^{17}kg)}{8031.38m}}   (9)

Finally:

V_{esc}=117.626m/s This is the minimum initial speed the rocks need to be thrown in order for them never return back to the asteroid.

6 0
2 years ago
A potential difference of 10.0 volts exists between two points, A and B, within an electric field. What is the
Viefleur [7K]

Answer:

1. 5.0 x 10^2 C

Explanation:

V=W/Q

10 = 2.0 x 10^-2/Q

Q = 2.0 x 10^-2/ 10

Q = 5.0 x 10^2 C

7 0
2 years ago
Point m is located a distance 2d from the midpoint between the two wires. find the magnitude of the magnetic field b1m created a
Tema [17]

Note: The diagram referred to in the question is attached here as a file.

Answer:

The magnitude of the magnetic field is B = \frac{0.071 \mu I}{d}

Explanation:

The magnetic field can be determined by the relationship:

B = \frac{\mu I}{2\pi R}...............(1)

Were I is the current flowing through the wires

The distance R from point 1 to m is calculated using the pythagora's theorem

R = \sqrt{d^{2} + (2d)^{2}  }

R = \sqrt{5d^{2} } \\R = d\sqrt{5}

Substituting R into equation (1)

B = \frac{\mu I}{2\pi d\sqrt{5} }

B = \frac{0.071 \mu I}{d}

3 0
2 years ago
Other questions:
  • A cement factory emits 900 kilograms of CO2 to produce 1,000 kilograms of cement. A fully grown tree removes six kilograms of CO
    13·2 answers
  • What is the freezing point of radiator fluid that is 50% antifreeze by mass? k f for water is 1.86 ∘ c/m?
    7·2 answers
  • Charge is distributed uniformly on the surface of a large flat plate. the electric field 2 cm from the plate is 30 n/c. the elec
    9·1 answer
  • A 1.00-kilogram ball is dropped from the top of a building. just before striking the ground, the ball's speed is 12.0 meters per
    14·1 answer
  • A box of mass 8 kg slides across a frictionless surface at an initial speed 1.5 m/s into a relaxed spring of spring constant 69
    12·1 answer
  • As a youngster, you drive a nail in the trunk of a young tree that is 3 meters tall. The nail is about 1.5 meters from the groun
    9·1 answer
  • A hydrogen discharge lamp emits light with two prominent wavelengths: 656 nm (red) and 486 nm (blue). The light enters a flint-g
    15·1 answer
  • Hydrogen peroxide is sold commercially as an aqueous solution in brown bottles to protect it from light. Calculate the longest w
    6·2 answers
  • A solid block of mass m is suspended in a liquid by a thread. The density of the block is greater than that of the liquid. Initi
    11·1 answer
  • A shot-putter exerts a force of 0.142 kN on a shot, accelerating it to 22.75 m/s2. What is the mass of the shot?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!