Given :
Displacement , y = 0.75 m .
Angular acceleration ,
.
Initial angular velocity ,
.
To Find :
The value of vertical velocity after time t = 0.25 s .
Solution :
By equation of circular motion is given by :

Putting all given values we get :

Now , vertical velocity is given by :

Therefore , the numerical value of the vertical velocity of the car at time t=0.25 s is 4.90 m/s .
Hence , this is the required solution .
Answer:
v_avg = 2.9 cm/s
Explanation:
The average velocity of the object is the sum of the distance of all its trajectories divided the time:

x_all is the total distance traveled by the object. In this case you have that the object traveled in the first trajectory 165cm-15cm = 150cm, and in the second one, 165cm - 25cm = 140cm
Then, x_all = 150cm + 140cm = 290cm
The average velocity is, for t = 100s

hence, the average velocity of the object in the total trajectory traveled is 2.9 cm/s
Answer:
The question has some details missing, here is the complete question ; A -3.0 nC point charge is at the origin, and a second -5.0nC point charge is on the x-axis at x = 0.800 m. Find the net electric force that the two charges would exert on an electron placed at point on the x-axis at x = 0.200 m.
Explanation:
The application of coulonb's law is used to approach the question as shown in the attached file.
Kepler's third law states that, for a planet orbiting around the Sun, the ratio between the cube of the radius of the orbit and the square of the orbital period is a constant:

(1)
where
r is the radius of the orbit
T is the period
G is the gravitational constant
M is the mass of the Sun
Let's convert the radius of the orbit (the distance between the Sun and Neptune) from AU to meters. We know that 1 AU corresponds to 150 million km, so

so the radius of the orbit is

And if we re-arrange the equation (1), we can find the orbital period of Neptune:

We can convert this value into years, to have a more meaningful number. To do that we must divide by 60 (number of seconds in 1 minute) by 60 (number of minutes in 1 hour) by 24 (number of hours in 1 day) by 365 (number of days in 1 year), and we get