answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SSSSS [86.1K]
2 years ago
12

At an oceanside nuclear power plant, seawater is used as part of the cooling system. This raises the temperature of the water th

at is discharged back into the ocean. The amount that the water temperature is raised has a uniform distribution over the interval from 10° to 25° C. Suppose that a temperature increase of more than 18° C is considered to be potentially dangerous to the environment. What is the probability that at any point in time, the temperature increase is potentially dangerous?
Physics
1 answer:
Mice21 [21]2 years ago
8 0
Answer is 30. just took it
You might be interested in
A planar loop consisting of seven turns of wire, each of which encloses 200 cm2, is oriented perpendicularly to a magnetic field
PtichkaEL [24]

Answer:

The induced current is 0.084 A

Explanation:

the area given by the exercise is

A = 200 cm^2 = 200x10^-4 m^2

R = 5 Ω

N = 7 turns

The formula of the emf induced according to Faraday's law is equal to:

ε = (-N * dφ)/dt = (N*(b2-b1)*A)/dt

Replacing values:

ε = (7*(38 - 14) * (200x10^-4))/8x10^-3 = 0.42 V

the induced current is equal to:

I = ε /R = 0.42/5 = 0.084 A

3 0
2 years ago
Read 2 more answers
A baseball player exerts a force of 100 N on a ball for a distance of 0.5 mas he throws it. If the ball has a mass of 0.15 kg, w
Aloiza [94]

Answer:

25.82 m/s

Explanation:

We are given;

Force exerted by baseball player; F = 100 N

Distance covered by ball; d = 0.5 m

Mass of ball; m = 0.15 kg

Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.

We should note that work done is a measure of the energy exerted by the baseball player.

Thus;

F × d = ½mv²

100 × 0.5 = ½ × 0.15 × v²

v² = (2 × 100 × 0.5)/0.15

v² = 666.67

v = √666.67

v = 25.82 m/s

4 0
1 year ago
The U.S. Department of Energy had plans for a 1500-kg automobile to be powered completely by the rotational kinetic energy of a
navik [9.2K]

Answer:

230

Explanation:

\omega = Rotational speed = 3600 rad/s

I = Moment of inertia = 6 kgm²

m = Mass of flywheel = 1500 kg

v = Velocity = 15 m/s

The kinetic energy of flywheel is given by

K=\dfrac{1}{2}I\omega^2\\\Rightarrow K=\dfrac{1}{2}6\times 3600^2\\\Rightarrow K=38880000\ J

Energy used in one acceleration

K=\dfrac{1}{2}mv^2\\\Rightarrow K=\dfrac{1}{2}1500\times 15^2\\\Rightarrow K=168750\ J

Number of accelerations would be given by

n=\dfrac{38880000}{168750}\\\Rightarrow n=230.4

So the number of complete accelerations is 230

8 0
2 years ago
If Emily throws the ball at an angle of 30∘ below the horizontal with a speed of 14m/s, how far from the base of the dorm should
liubo4ka [24]

Emily throws the ball at 30 degree below the horizontal

so here the speed is 14 m/s and hence we will find its horizontal and vertical components

v_x = 14 cos30 = 12.12 m/s

v_y = 14 sin30 = 7 m/s

vertical distance between them

\delta y = 4 m

now we will use kinematics in order to find the time taken by the ball to reach at Allison

\delat y = v_y *t + \frac{1}{2} at^2

here acceleration is due to gravity

a = 9.8 m/s^2

now we will have

4 = 7 * t + \frac{1}{2}*9.8 * t^2

now solving above quadratic equation we have

t = 0.44 s

now in order to find the horizontal distance where ball will fall is given as

d = v_x * t

here it shows that horizontal motion is uniform motion and it is not accelerated so we can use distance = speed * time

d = 12.12 * 0.44 = 5.33 m

so the distance at which Allison is standing to catch the ball will be 5.33 m

8 0
2 years ago
A particle in the first excited state of a one-dimensional infinite potential energy well (with U = 0 inside the well) has an en
nataly862011 [7]

Answer:

The energy of this particle in the ground state is E₁=1.5 eV.

Explanation:

The energy E_{n} of a particle of mass <em>m</em> in the <em>n</em>th energy state of an infinite square well potential with width <em>L </em>is:

                                                    E_{n}=\frac{n^{2}h^{2}}{8mL^{2}}

In the ground state (n=1). In the first excited state (n=2) we are told the energy is E₂= 6.0 eV. If we replace in the above equation we get that:

                                                    E_{1}=\frac{h^{2}}{8mL^{2}}            

                                                    E_{2}=\frac{h^{2}}{2mL^{2}}

So we can rewrite the energy in the ground state as:

                                                   E_{1}=\frac{1}{4}(\frac{h^{2}}{2mL^{2}})

                                                      E_{1}=\frac{1}{4} E_{2}

                                                   E_{1}=\frac{1}{4} ( 6.0\ eV)

Finally

                                                    E_{1}=1.5\ eV

                                                   

                                                   

6 0
2 years ago
Other questions:
  • Describe several uses of plastic, and explain why plastic is a good choice for these products
    14·1 answer
  • A stone is dropped from a tower 100 meters above the ground. The stone falls past ground level and into a well. It hits the wate
    9·1 answer
  • A system delivers 1275 j of heat while the surroundings perform 855 j of work on it. calculate ∆esys in j.
    8·1 answer
  • The moon orbits our Earth. The opposite would never be true; the Earth would never orbit the moon. One reason is due to the forc
    9·2 answers
  • A Turtle and a Snail are 360 meters apart, and they start to move towards each other at 3 p.m. If the Turtle is 11 times as fast
    12·2 answers
  • For a long ideal solenoid having a circular cross-section, the magnetic field strength within the solenoid is given by the equat
    8·2 answers
  • A sleep time of 15.9 hours per day for a newborn baby is at the 10th percentile of the distribution of sleep times for all newbo
    13·1 answer
  • A 150 g particle at x = 0 is moving at 8.00 m/s in the +x-direction. As it moves, it experiences a force given by Fx=(0.850N)sin
    11·1 answer
  • 1. For each of the following scenarios, describe the force providing the centripetal force for the motion: a. a car making a tur
    10·1 answer
  • A pillow is thrown downward with an initial speed of 6 m/s.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!