When the ball has left your hand and is flying on its own, its kinetic energy is
KE = (1/2) (mass) (speed²)
KE = (1/2) (0.145 kg) (25 m/s)²
KE = (0.0725 kg) (625 m²/s²)
<em>KE = 45.3 Joules</em>
If the baseball doesn't have rocket engines on it, or a hamster inside running on a treadmill that turns a propeller on the outside, then there's only one other place where that kinetic energy could come from: It MUST have come from the hand that threw the ball. The hand would have needed to do <em>45.3 J</em> of work on the ball before releasing it.
Answer with Explanation:
We are given that


Charge on proton,q=
a.We have to find the electric potential of the proton at the position of the electron.
We know that the electric potential

Where 


B.Potential energy of electron,U=
Where
Charge on electron
=Charge on proton
Using the formula


By definition, the kinetic energy is given by:
K = (1/2) * m * v ^ 2
where
m = mass
v = speed
We must then find the speed of both objects:
blue puck
v = root ((0) ^ 2 + (- 3) ^ 2) = 3
gold puck
v = root ((12) ^ 2 + (- 5) ^ 2) = 13
Then, the kinetic energy of the system will be:
K = (1/2) * m1 * v1 ^ 2 + (1/2) * m2 * v2 ^ 2
K = (1/2) * (4) * (3 ^ 2) + (1/2) * (6) * (13 ^ 2)
K = <span>
525</span> J
answer
The kinetic energy of the system is<span>
<span>525 </span></span>J
Answer:

Explanation:
For this problem, we can use Boyle's law, which states that for a gas at constant temperature, the product between pressure and volume remains constant:

which can also be rewritten as

In our case, we have:
is the initial pressure
is the initial volume
is the final pressure
Solving for V2, we find the final volume:
