answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andreas93 [3]
2 years ago
6

. 30

Physics
1 answer:
schepotkina [342]2 years ago
7 0

Answer:

Explanation:

Length if the bar is 1m=100cm

The tip of the bar serves as fulcrum

A force of 20N (upward) is applied at the tip of the other end. Then, the force is 100cm from the fulcrum

The crate lid is 2cm from the fulcrum, let the force (downward) acting on the crate be F.

Using moment

Sum of the moments of all forces about any point in the plane must be zero.

Let take moment about the fulcrum

100×20-F×2=0

2000-2F=0

2F=2000

Then, F=1000N

The force acting in the crate lid is 1000N

Option D is correct

You might be interested in
Denise is conducting a physics experiment to measure the acceleration of a falling object when it slows down and comes to a stop
iren [92.7K]
We need a and we have m and F . Now a = f÷m so therefore a = 4,9 ÷ 0,5 which is 0,98 metres per cubic second
4 0
2 years ago
Read 2 more answers
In pulling two identical carry-on bags through the airport, Mr. Myers and his 13 year old grandson, Vincent, do the same amount
Novay_Z [31]

Answer:

Mr Myers and his son use the same force to pull the bags between the gates

Explanation:

The work done by Mr. Myers in pulling the carryon bags = The work done by his 13 year old grandson in pulling the identical bag

Let F₁ represent the force used by Mr Myers, and let F₂ represent the force F₂ used by his grandson

Let d represent the distance through the gate

Therefore, given that Work done, W = Force, F × Distance, we have;

The work done by Mr Myers between the gates, W₁ = F₁ × d

The work done by his grandson between the gates, W₂ = F₂ × d

Where, the work done by both Mr Myers and his grandson are equal, we have;

W₁ = W₂ and therefore, F₁ × d = F₂ × d, which gives;

F₁ = F₂, the force used by both Mr Myers and his son between the gates are equal.

5 0
2 years ago
Liam throws a water balloon horizontally at 8.2 m/s out of a window 18 m from the ground.
Alecsey [184]

Time taken by the water balloon to reach the bottom will be given as

h = \frac{1}{2} gt^2

here we know that

h = 18 m

g = 9.8 m/s^2

now by the above formula

18 = \frac{1}{2}*9.8* t^2

18 = 4.9 t^2

t = 1.92 s

now in the same time interval we can say the distance moved by it will be

d = v_x * t

d = 8.2 * 1.92 = 15.7 m

so it will fall at a distance 15.7 m from its initial position

5 0
2 years ago
When jumping, a flea accelerates at an astounding 1000 m/s2 but over the very short distance of 0.50 mm. If a flea jumps straigh
Nadusha1986 [10]

Answer:

The flea reaches a height of 51 mm.

Explanation:

Hi there!

The equations of height and velocity of the flea are the following:

During the jump:

h = h0 + v0 · t + 1/2 · a · t²

v = v0 + a · t

While in free fall:

h = h0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

h = height of the flea at time t.

h0 = initial height.

v0 = initial velocity.

t = time.

a = acceleration of the flea due to the jump.

v = velocity of the flea at time t.

g = acceleration due to gravity.

First, let's calculate how much time it takes the flea to reach a height of 0.0005 m. With that time, we can calculate the speed reached by the flea during the jump:

h = h0 + v0 · t + 1/2 · a · t²

If we place the origin of the frame of reference on the ground, then, h0 = 0. Since the flea is initially at rest, v0 = 0. Then:

h = 1/2 · a · t²

We have to find the value of t for which h = 0.0005 m:

0.0005 m = 1/2 · 1000 m/s² · t²

0.0005 m / 500 m/s² = t²

t = 0.001 s

Now, let's find the velocity reached in that time:

v = v0 + a · t   (v0 = 0)

v = a · t

v = 1000 m/s² · 0.001 s

v = 1.00 m/s

When the flea is at a height of 0.50 mm, its velocity is 1.00 m/s. This initial velocity will start to decrease due to the downward acceleration of gravity. When the velocity is zero, the flea will be at the maximum height. Using the equation of velocity, let's find the time at which the flea is at the maximum height (v = 0):

v = v0 + g · t

At the maximum height, v = 0:

0 m/s = 1.00 m/s - 9.81 m/s² · t

-1.00 m/s / -9.81 m/s² = t

t = 0.102 s

Now, let's find the height reached by the flea in that time:

h = h0 + v0 · t + 1/2 · g · t²

h = 0.0005 m + 1.00 m/s · 0.102 s - 1/2 · 9.81 m/s² · (0.102 s)²

h = 0.051 m

The flea reaches a height of 51 mm.

5 0
2 years ago
If one replaces the conducting cube with one that has positive charge carriers, in what direction does the induced electric fiel
Grace [21]

Answer:

There will be no change in the direction of the electric field .

Explanation:

The direction will remain the same because the sign of the charges has no effect on it.

When one replaces the conducting cube with one that has positive charge carriers there will be no change in the direction of the field as there is no defined relationship between the direction of the electric field and sign of the charge.

3 0
2 years ago
Other questions:
  • Recall the previous question and the scenario with Zamir and Talia finding their way through a maze. Why is their displacement t
    6·2 answers
  • A 40-w lightbulb connected to a 120-v source experiences a voltage surge that produces 132 v for a moment. by what percentage do
    9·1 answer
  • If a 3-kg rabbit's leg muscles act as imperfectly elastic springs, how much energy will they hold if the rabbit lands from a hei
    5·2 answers
  • A charge Q is placed on the x axis at x = +4.0 m. A second charge q is located at the origin. If Q = +75 nC and q = −8.0 nC, wha
    6·1 answer
  • A 40-mH ideal inductor is connected in series with a 50 Ω resistor through an ideal 15-V DC power supply and an open switch. If
    5·1 answer
  • While traveling from Boston to Hartford, Person A drives at a constant speed of 55 mph for the entire trip. Person B drives at 6
    13·1 answer
  • Spacecraft have been sent to Mars in recent years. Mars is smaller than Earth and has correspondingly weaker surface gravity. On
    7·1 answer
  • A physics student hurries through their lab, releasing the bob of a simple pendulum from a height, and allowing it to swing. He
    7·1 answer
  • While dangling a hairdryer by its cord, you observe that the cord is vertical when the hairdryer isoff and, once it is turned on
    5·1 answer
  • You place a 3.0-m-long board symmetrically across a 0.5-m-wide chair to seat three physics students at a party at your house. If
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!