Answer:
Explanation:
It is given that three cars has same mass m with speed 
suppose rest two cars also has same mass m
As there is no external force therefore momentum is conserved
Initial Momentum 

Final momentum 

where v=final velocity



thus final velocity is 
Based on the given values above, in order for us to get the answer, we need to convert the units first. So in 1 kilogram, there is 1,000,000 micrograms. In this case, 1.6 kilograms is 1,600,000 micrograms. For the week to seconds, 1 week is equivalent to 604,800 seconds. Therefore, 1,600,000 micrograms/604,800 seconds. So we are going to simplify this. So it would be 2.65<span>µg/s. Hope this answers your question.</span>
Answer:
The angular speed of the wheel is 0.452 rad/s
Explanation:
The angle through which the car wheel turns, Δθ = 277° = 277/360 × 2·π radian
The time it takes for the car wheel to turn, Δt = 10.7 s
The angular speed, ω is given by the following equation;

Substituting the known values for Δθ and Δt gives;

The angular speed of the wheel = 0.452 rad/s
Answer:
The rise in temperature is 0.06 K.
Explanation:
mass of bullet, m = 15 g
initial speed, u = 865 m/s
final speed, v = 534 m/s
mass of water, M = 13.5 kg
specific heat of water, c = 4200 J/kg K
The change in kinetic energy

According to the conservation of energy, the change in kinetic energy is used to heat the water.
K = m c T
where, T is the rise in temperature.
3473 = 13.5 x 4200 x T
T = 0.06 K
Answer:
0.087976 Nm
Explanation:
The magnetic torque (τ) on a current-carrying loop in a magnetic field is given by;
τ = NIAB sinθ --------- (i)
Where;
N = number of turns of the loop
I = current in the loop
A = area of each of the turns
B = magnetic field
θ = angle the loop makes with the magnetic field
<em>From the question;</em>
N = 200
I = 4.0A
B = 0.70T
θ = 30°
A = π d² / 4 [d = diameter of the coil = 2.0cm = 0.02m]
A = π x 0.02² / 4 = 0.0003142m² [taking π = 3.142]
<em>Substitute these values into equation (i) as follows;</em>
τ = 200 x 4.0 x 0.0003142 x 0.70 sin30°
τ = 200 x 4.0 x 0.0003142 x 0.70 x 0.5
τ = 200 x 4.0 x 0.0003142 x 0.70
τ = 0.087976 Nm
Therefore, the torque on the coil is 0.087976 Nm