Answer:
4.8967m
Explanation:
Given the following data;
M = 0.2kg
∆p = 0.58kgm/s
S(i) = 2.25m
Ratio h/w = 12/75
Firstly, we use conservation of momentum to find the velocity
Therefore, ∆p = MV
0.58kgm/s = 0.2V
V = 0.58/2
V = 2.9m/s
Then, we can use the conservation of energy to solve for maximum height the car can go
E(i) = E(f)
1/2mV² = mgh
Mass cancels out
1/2V² = gh
h = 1/2V²/g = V²/2g
h = (2.9)²/2(9.8)
h = 8.41/19.6 = 0.429m
Since we have gotten the heigh, the next thing is to solve for actual slant of the ramp and initial displacement using similar triangles.
h/w = 0.429/x
X = 0.429×75/12
X = 2.6815
Therefore, by Pythagoreans rule
S(ramp) = √2.68125²+0.429²
S(ramp) = 2.64671
Finally, S(t) = S(ramp) + S(i)
= 2.64671+2.25
= 4.8967m
Answer:
The induced current is 0.084 A
Explanation:
the area given by the exercise is
A = 200 cm^2 = 200x10^-4 m^2
R = 5 Ω
N = 7 turns
The formula of the emf induced according to Faraday's law is equal to:
ε = (-N * dφ)/dt = (N*(b2-b1)*A)/dt
Replacing values:
ε = (7*(38 - 14) * (200x10^-4))/8x10^-3 = 0.42 V
the induced current is equal to:
I = ε /R = 0.42/5 = 0.084 A
Answer:395.6 m/s
Explanation:
Given
mass of bullet 
mass of wood block 
Length of string 
Center of mass rises to an height of 
initial velocity of bullet 
let
and
be the velocity of bullet and block after collision
Conserving momentum
-------------1
Now after the collision block rises to an height of 0.38 cm
Conserving Energy for block
kinetic energy of block at bottom=Gain in Potential Energy




substitute the value of
in equation 1


You will have to use this formula:

Final Velocity (V) = 4m/s
Initial Velocity (Vo) = 8m/s
Acceleration (a) = ? m/s^2
Time (t) = 2 secs
Then:
-> 4 = 8 + a x 2
-> 4 - 8 = 2a
-> -4 = 2a
-> a = -4/2
-> a = -2 m/s^2
Ps: It's value is negative because the she was in retrograde motion.
Answer: Her acceleration is -2 m/s^2.
When the body touches the ground two types of Forces will be generated. The Force product of the weight and the Normal Force. This is basically explained in Newton's third law in which we have that for every action there must also be a reaction. If the Force of the weight is pointing towards the earth, the reaction Force of the block will be opposite, that is, upwards and will be equivalent to its weight:
F = mg
Where,
m = mass
g = Gravitational acceleration
F = 5*9.8
F = 49N
Therefore the correct answer is E.