answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
krok68 [10]
1 year ago
14

Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view additional

questions.
Site 1: "Facial Feedback Theory Script"

After watching the case study and reading the script about the facial feedback theory, reflect on how you feel. Did you realize that none of the images showed angry faces? Why do you think you viewed only pictures of smiling people, and what effect do you think it was meant to have on you as the viewer? What do you think would occur if you were asked to view the case study again, this time using a mirror to mimic the faces you saw on screen? (Site 1)
Physics
1 answer:
vivado [14]1 year ago
6 0

The facial feedback theory is a psychological theory associated with the emotional consequences due to physiological actions.

The provided case study a number of smiling faces which made the person saying it smile thereby working there muscles that related with smile this makes a psychological consequence and people find  things much  more funnier than they usually are.

If as a viewer again this case study is provided and the viewers is allowed to mimic in mirror he or she will again make much  funnier faces due to the psychological consequence.

You might be interested in
A plane initially traveling at 200 m/s due west experiences a 10 m/s head wind coming from the opposite direction. A). What will
Hitman42 [59]
Ok so it would be late and the relative velocity would be 190 m/s because 200 m/s - 10 m/s is 190 m/s. Hope this helps.
8 0
2 years ago
A car travels at a constant rate for 25 miles, going due east for one hour. Then it travels at a constant rate another 60 miles
egoroff_w [7]

60 mph east...........

6 0
1 year ago
Read 2 more answers
A 100 cm3 block of lead weighs 11N is carefully submerged in water. One cm3 of water weighs 0.0098 N.
Pie

#1

Volume of lead = 100 cm^3

density of lead = 11.34 g/cm^3

mass of the lead piece = density * volume

m = 100 * 11.34 = 1134 g

m = 1.134 kg

so its weight in air will be given as

W = mg = 1.134* 9.8 = 11.11 N

now the buoyant force on the lead is given by

F_B = W - F_{net}

F_B = 11.11 - 11 = 0.11 N

now as we know that

F_B = \rho V g

0.11 = 1000* V * 9.8

so by solving it we got

V = 11.22 cm^3

(ii) this volume of water will weigh same as the buoyant force so it is 0.11 N

(iii) Buoyant force = 0.11 N

(iv)since the density of lead block is more than density of water so it will sink inside the water


#2

buoyant force on the lead block is balancing the weight of it

F_B = W

\rho V g = W

13* 10^3 * V * 9.8 = 11.11

V = 87.2 cm^3

(ii) So this volume of mercury will weigh same as buoyant force and since block is floating here inside mercury so it is same as its weight =  11.11 N

(iii) Buoyant force = 11.11 N

(iv) since the density of lead is less than the density of mercury so it will float inside mercury


#3

Yes, if object density is less than the density of liquid then it will float otherwise it will sink inside the liquid

3 0
1 year ago
You want to move a heavy box with mass 30.0 kg across a carpeted floor. You pull hard on one of the edges of the box at an angle
charle [14.2K]

Answer:

a=5.54m/s^{2}

Explanation:

The net force, F_{net} of the box is expressed as a product of acceleration and mass hence

F_{net}=ma where m is mass and a is acceleration

Making a the subject, a= \frac {F_{net}}{m}

From the attached sketch,  

∑ F_{net}=Fcos\theta-F_{f} where F_{f} is frictional force and \theta is horizontal angle

Substituting ∑ F_{net} as F_{net} in the equation where we made a the subject

a= \frac {Fcos\theta-F_{f}}{m}

Since we’re given the value of F as 240N, F_{f} as 41.5N, \theta as 30^{o} and mass m as 30kg

a= \frac {240cos30-41.5}{30.0}=\frac {166.346}{30.0}=5.54m/s^{2}

6 0
2 years ago
Assuming the starting height is 0.0 m, calculate the potential energy of the cart after it has been elevated to a height of 0.5
Bogdan [553]
The potential energy is most often referred to as the "energy at rest" and is dependent on the elevation of an object. This can be calculated through the equation,

     E = mgh

where E is the potential energy, m is the mass, g is the acceleration due to gravity, and h is the height. In this item, we are not given with the mass of the cart so we assume it to be m. The force is therefore,

   E = m(9.8 m/s²)(0.5 m) = 4.9m

Hence, the potential energy is equal to 4.9m.
8 0
2 years ago
Other questions:
  • Examine the circuit. Pretend you are an electron flowing through this circuit and you are with a group of other electrons. Sudde
    14·2 answers
  • A scientist measures the growth of a bamboo plant over time. The table below shows the results.
    5·2 answers
  • A 225 kg red bumper car is moving at 3.0 m/s. It hits a stationary 180 kg blue bumper car. The red and blue bumper cars combine
    8·2 answers
  • Bill throws a tennis ball to his dog. He throws the ball at a speed of 15 m/s at an angle of 30° to the horizontal. Assume he th
    10·1 answer
  • Suzy drops a rock from the roof of her house. Mary sees the rock pass her 2.9 m tall window in 0.134 sec. From how high above th
    7·1 answer
  • Bernice draws an oxygen atom. She draws a small circle for the nucleus. Inside of the circle, she draws plus signs for protons a
    14·1 answer
  • A wire loop is suspended from a string that is attached to point P in the drawing. When released, the loop swings downward, from
    11·1 answer
  • A projectile is launched from the ground with an initial velocity of 12ms at an angle of 30° above the horizontal. The projectil
    15·2 answers
  • Suppose the foreman had released the box from rest at a height of 0.25 m above the ground. What would the crate's speed be when
    12·1 answer
  • What would happen to the number of home runs a player could hit if the air was removed from above the field? Use your understand
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!