Answer:
The tension in the string is quadrupled i.e. increased by a factor of 4.
Explanation:
The tension in the string is the centripetal force. This force is given by

m is the mass, v is the velocity and r is the radius.
It follows that
, provided m and r are constant.
When v is doubled, the new force,
, is

Hence, the tension in the string is quadrupled.
Answer:

Explanation:
For the first ball, the moment of inertia and the kinetic energy is:


So, replacing, we get that:

At the same way, the moment of inertia and kinetic energy for second ball is:


So:

Then,
is equal to
, so:




Finally, solving for
, we get:

To solve the problem it is necessary to apply the concepts related to the conservation of energy through the heat transferred and the work done, as well as through the calculation of entropy due to heat and temperatra.
By definition we know that the change in entropy is given by

Where,
Q = Heat transfer
T = Temperature
On the other hand we know that by conserving energy the work done in a system is equal to the change in heat transferred, that is

According to the data given we have to,




PART A) The total change in entropy, would be given by the changes that exist in the source and sink, that is



On the other hand,



The total change of entropy would be,



Since
the heat engine is not reversible.
PART B)
Work done by heat engine is given by



Therefore the work in the system is 100000Btu
Kinetic energy<span> is the </span>energy<span> of motion. An object that has motion - whether it is vertical or horizontal motion - has </span>kinetic energy<span>. It is expressed as:
KE = mv^2 /2
720 = 10.0v^2 /2
v = 12 m/s
Hope this answers the question. Have a nice day.</span>