answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stolb23 [73]
2 years ago
11

If the temperature of an ideal gas is increased from 200 K to 600 K, what happens to the rms speed of the molecules? (a) It incr

eases by a factor of 3. (b) It remains the same. (c) It is one third of the original speed. (d) It is !3 times the original speed. (e) It increases by a factor of 6.
Physics
2 answers:
lawyer [7]2 years ago
7 0

Answer: (d) It is !3 times the original speed.

Explanation: The rms speed of a gas is related to its temperature by the formulae below;

U(r.m.s) =√(3RT)/M

Where;

T represents the temperature.

R represents the gas constant.

M represents the molar mass of the gas.

Therefore, if the temperature increases from 200k to 600k

The temperature has then increased by a factor of 3,

However, we must note that temperature in the formulae is included in the square-root

Recall,

U(r.m.s) =√(3RT)/M

Consequently, temperature (T) can now be represented by (3T).

The inference drawn from this is that the root-mean-square speed would increase by a factor of √3

Therefore, option (d) is correct.

allochka39001 [22]2 years ago
7 0

Complete question:

If the temperature of an ideal gas is increased from 200 K to 600 K, what happens to the rms speed of the molecules? (a) It increases by a factor of 3. (b) It remains the same. (c) It is one third of the original speed. (d) It is \sqrt{3} times the original speed. (e) It increases by a factor of 6.

Answer:

d) It is \sqrt{3} the original speed.

Explanation:

Temperature is a macroscopic property of objects that is intrinsically connected with the microscopic world, because is related with the speed of the microscopic particles it is composed, more precisely is related with the average speed of the microscopic particle. On an ideal gas that relation is contained in the Root Mean Square speed or RMS speed of the molecule on the gas, it states:

v_{rms}=\sqrt{\frac{3RT}{M}}

With M the molar mass, R the ideal gas constant and T the temperature of the gas. For 200K temperature:

v_{200}=\sqrt{\frac{3R200}{M}}(1)

For 600K temperature:

v_{600}=\sqrt{\frac{3R(600)}{M}}=\sqrt{\frac{3R(3*200)}{M}}=\sqrt{3} \sqrt{\frac{3R(200)}{M}}(2)

Note that the term \sqrt{\frac{3R(200)}{M}} is the same on (1) so we can write (2) as:

v_{600}=\sqrt{3}v_{200}

So, the new rms speed is \sqrt{3} the original speed.

You might be interested in
. Imagine that you are standing at the center of a giant bowl of gelatin. What type of wave will you make across the top of the
vichka [17]
Transverse wave as the wave is going up and down no compressions
3 0
2 years ago
The mass per unit length of a 14-gauge copper wire is 18.5 g/m. If the wire is placed running along the horizontal x-axis (east-
zmey [24]

Answer:

0.6295 A

Explanation:

I=mg/BL put values in this formula.  

7 0
1 year ago
A semi is traveling down the highway at a velocity of v = 26 m/s. The driver observes a wreck ahead, locks his brakes, and begin
Dovator [93]

Answer:

fcosθ + Fbcosθ  =Wtanθ

Explanation:

Consider the diagram shown in attachment

fx= fcosθ (fx: component of friction force in x-direction ; f: frictional force)

Fbx= Fbcosθ ( Fbx: component of braking force in x-direction ; Fb: braking force)

Wx= Wtanθ (Wx: component of weight in x-direction ; W: Weight of semi)

sum of x-direction forces = 0

fx+ Fbx=Wx

fcosθ + Fbcosθ  =Wtanθ

7 0
2 years ago
A goat enclosure is in the shape of a right triangle. One leg of the enclosure is built against the side of the barn. The other
san4es73 [151]

Answer:

16,18,22

Or

1,3,7

Explanation:

The detailed explanation is contained in the image attached. The lengths are found using Pythagoras theorem and the two lengths reflects the two values of x yielded by the quadratic equation

8 0
2 years ago
The image shows one complete cycle of a mass on a spring in simple harmonic motion. An illustration of a mass on a vertical spri
Alja [10]

Answer:

D. "The net force is zero, so the acceleration is zero"

Explanation:

edge 2020

6 0
2 years ago
Other questions:
  • The image shows an example of white light entering a prism and coming out as colors of the rainbow. How does a prism a produce t
    11·2 answers
  • At the instant a ball is thrown horizontally with a large force, an identical ball is dropped from the same height. which ball h
    10·2 answers
  • a 160 kilogram space vehicle is traveling along a straight line at a constant speed of 800 meters per second. The magnitude of t
    9·1 answer
  • in a thermal power plant, heat from the flue gases is recovered in (A) chimney (B) de-super heater (C) economizer (D) condenser
    6·1 answer
  • A huge (essentially infinite) horizontal nonconducting sheet 10.0 cm thick has charge uniformly spread over both faces. The uppe
    6·1 answer
  • Describe how electromagnetic radiation can ionise an atom. 2 marks
    14·1 answer
  • A pilot in a small plane encounters shifting winds. He flies 26.0 km northeast, then 45.0 km due north. From this point, he flie
    11·1 answer
  • You have a resistor and a capacitor of unknown values. First, you charge the capacitor and discharge it through the resistor. By
    14·1 answer
  • If a cliff jumper leaps off the edge of a 100m cliff, how long does she fall before hitting the water? (assume zero air resistan
    10·1 answer
  • Two motorcycles travel along a straight road heading due north. At t = 0 motorcycle 1 is at x = 50 m and moves with a constant s
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!