answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stolb23 [73]
2 years ago
11

If the temperature of an ideal gas is increased from 200 K to 600 K, what happens to the rms speed of the molecules? (a) It incr

eases by a factor of 3. (b) It remains the same. (c) It is one third of the original speed. (d) It is !3 times the original speed. (e) It increases by a factor of 6.
Physics
2 answers:
lawyer [7]2 years ago
7 0

Answer: (d) It is !3 times the original speed.

Explanation: The rms speed of a gas is related to its temperature by the formulae below;

U(r.m.s) =√(3RT)/M

Where;

T represents the temperature.

R represents the gas constant.

M represents the molar mass of the gas.

Therefore, if the temperature increases from 200k to 600k

The temperature has then increased by a factor of 3,

However, we must note that temperature in the formulae is included in the square-root

Recall,

U(r.m.s) =√(3RT)/M

Consequently, temperature (T) can now be represented by (3T).

The inference drawn from this is that the root-mean-square speed would increase by a factor of √3

Therefore, option (d) is correct.

allochka39001 [22]2 years ago
7 0

Complete question:

If the temperature of an ideal gas is increased from 200 K to 600 K, what happens to the rms speed of the molecules? (a) It increases by a factor of 3. (b) It remains the same. (c) It is one third of the original speed. (d) It is \sqrt{3} times the original speed. (e) It increases by a factor of 6.

Answer:

d) It is \sqrt{3} the original speed.

Explanation:

Temperature is a macroscopic property of objects that is intrinsically connected with the microscopic world, because is related with the speed of the microscopic particles it is composed, more precisely is related with the average speed of the microscopic particle. On an ideal gas that relation is contained in the Root Mean Square speed or RMS speed of the molecule on the gas, it states:

v_{rms}=\sqrt{\frac{3RT}{M}}

With M the molar mass, R the ideal gas constant and T the temperature of the gas. For 200K temperature:

v_{200}=\sqrt{\frac{3R200}{M}}(1)

For 600K temperature:

v_{600}=\sqrt{\frac{3R(600)}{M}}=\sqrt{\frac{3R(3*200)}{M}}=\sqrt{3} \sqrt{\frac{3R(200)}{M}}(2)

Note that the term \sqrt{\frac{3R(200)}{M}} is the same on (1) so we can write (2) as:

v_{600}=\sqrt{3}v_{200}

So, the new rms speed is \sqrt{3} the original speed.

You might be interested in
You are using a rope to lift a 14.5 kg crate of fruit. Initially you are lifting the crate at 0.500 m/s. You then increase the t
lina2011 [118]

Answer:

W = 172.5 J

Explanation:

given,                                    

mass of the fruit crate = 14.5 kg

initial velocity to lift = 0.500 m/s

increase in the tension = 150 N

lift of crate = 1.15 m                  

work done by the tension = ?        

work done  = force x displacement

W = F s cos θ                                

θ = 0°                                    

W = F s x cos 0                                  

W = 150 x 1.15 x 1                

W = 172.5 J                                      

Work done on the crate by the tension force = W = 172.5 J

5 0
2 years ago
Two resistors of 5.0 and 9.0 ohm are connected in parallel. A 4.0 ohm resistor is then connected in series with the parallel com
rewona [7]

Answer:

I1 = 0.772 A

Explanation:

<u>Given</u>: R1 = 5.0 ohm, R2 = 9.0 ohm, R3 = 4.0 ohm, V = 6.0 Volts

<u>To find</u>:  current I = ? A

<u>Solution: </u>

Ohm's law  V= I R

⇒   I = V / R

In order to find R (total) we first find R (p) fro parallel combination. so

1 / R (p) = 1 / R1  + 1/ R2          ∴(P) stand for parallel

R (p) = R1R2 / ( R1 + R2)

R (p) = (5.0 × 9.0) / (5.0 + 9.0)

R (p) = 3.214 ohm

Now R (total) = R (p) + R3     (as R3 is connected in series)

R (total) = 3.214 ohm + 4.0 Ohm

R (total) = 7.214 ohm

now I (total) = 7.214 ohm / 6.0 Volts

I (total) = 1.202 A

This the total current supplied by 6 volts battery.

as voltage drop across R (p) = V = R (p) × I (total)

V (p) = 3.214 ohm × 1.202 A  = 3.864 volts

Now current through 5 ohms resister  is I1 = V (P) / R1

I1 = 3.864 volts / 5 ohm

I1 = 0.772 A

3 0
2 years ago
A 5.0-n projectile leaves the ground with a kinetic energy of 220 j. at the highest point in its trajectory, its kinetic energy
NikAS [45]
First, we get the difference between the kinetic energies such that,
             difference = (220J - 120J)
             difference = 100 J
The difference in kinetic energy is the equivalent of the potential energy which is calculated through the equation,
              PE = mgh
To calculate for the height, we derive the equation in a form,
           h = PE/mg
The product of the mass and acceleration due to gravity is the weight. 
                   h = (100 J) / (5 N)
                   h = 20 m

<em>Hence, the answer is 20 m. </em>
3 0
2 years ago
Two satellites revolve around the Earth. Satellite A has mass m and has an orbit of radius r. Satellite B has mass 6m and an orb
melomori [17]

Answer:

aaaaa

Explanation:

M = Mass of the Earth

m = Mass of satellite

r = Radius of satellite

G = Gravitational constant

F=G\frac{Mm}{r^2}

F=G\frac{M6m}{r_b^2}

G\frac{Mm}{r^2}=G\frac{M6m}{r_b^2}\\\Rightarrow \frac{1}{r^2}=\frac{6}{r_b^2}\\\Rightarrow \frac{r_b^2}{r^2}=6\\\Rightarrow \frac{r_b}{r}=\sqrt{6}\\\Rightarrow r_b=2.44948r

r_b=2.44948r

8 0
2 years ago
Use Kepler’s third law and the orbital motion of Earth to determine the mass of the Sun. The average distance between Earth and
Anna11 [10]

Kepler’s third law formula: T^2=4pi^2*r^3/(GM)

We’re trying to find M, so:

M=4pi^2*r^3/(G*T^2)

M=4pi^2*(1.496 × 10^11 m)^3/((6.674× 10^-11N*m^2/kg^2)*(365.26days)^2)

M=1.48× 10^40(m^3)/((N*m^2/kg^2)*days^2))

Let’s work with the units:

(m^3)/((N*m^2/kg^2)*days^2))=

=(m^3*kg^2)/(N*m^2*days^2)

=(m*kg^2)/(N*days^2)

=(m*kg^2)/((kg*m/s^2)*days^2)

=(kg)/(days^2/s^2)

=(kg*s^2)/(days^2)

So:

M=1.48× 10^40(kg*s^2)/(days^2)

Now we need to convert days to seconds in order to cancel them:

1 day=24 hours=24*60minutes=24*60*60s=86400s

M=1.48× 10^40(kg*s^2)/((86400s)^2)

M=1.48× 10^40(kg*s^2)/( 86400^2*s^2)

M=1.48× 10^40kg/86400^2

M=1.98x10^30kg

The closest answer is 1.99 × 10^30

(it may vary a little with rounding – the difference is less than 1%)

5 0
2 years ago
Read 2 more answers
Other questions:
  • A very long, straight horizontal wire carries a current such that 8.15×1018 electrons per second pass any given point going from
    5·2 answers
  • describe how the piece of chalk in this image may be affected by static friction, sliding friction, fluid friction and rolling f
    9·2 answers
  • The forward movement of orbital waves classifies them as ____ waves.
    13·1 answer
  • Male Rana catesbeiana bullfrogs are known for their loud mating call. The call is emitted not by the frog's mouth but by its ear
    14·1 answer
  • For tax and accounting purposes, corporations depreciate the value of equipment each year. One method used is called "linear dep
    10·1 answer
  • Assume you are given an int variable named nElements and a 2-dimensional array that has been created and assigned to a2d. Write
    11·1 answer
  • Hiran is standing beside the road when he hears a bird flying away from hip and chirping. The bird’s chirp has a frequency of 18
    11·1 answer
  • Shows the position-versus-time graph of a particle in SHM. Positive direction is the direction to the right.
    6·1 answer
  • 01 – (Valor – 2,0) O maior campo de testes de veículos da América Latina, localizado na cidade de Indaiatuba (SP), tem forma cir
    15·1 answer
  • State<br><br> What is the correct order of tasks for washing dishes in a three-compartment sink?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!