answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
worty [1.4K]
2 years ago
14

On a cold winter day when the temperature is −20∘C, what amount of heat is needed to warm to body temperature (37 ∘C) the 0.50 L

of air exchanged with each breath? Assume that the specific heat of air is 1020 J/kg⋅K and that 1.0 L of air has mass 1.3×10−3kg.
Physics
1 answer:
vlabodo [156]2 years ago
4 0

Answer:

75.6J

Explanation:

Hi!

To solve this problem we must use the first law of thermodynamics that states that the heat required to heat the air is the difference between the energy levels of the air when it enters and when it leaves the body,

Given the above we have the following equation.

Q=(m)(h2)-(m)(h1)

where

m=mass=1.3×10−3kg.

h2= entalpy at 37C

h1= entalpy at -20C

Q=m(h2-h1)

remember that the enthalpy differences for the air can approximate the specific heat multiplied by the temperature difference

Q=mCp(T2-T1)

Cp= specific heat of air = 1020 J/kg⋅K

Q=(1.3×10−3)(1020)(37-(-20))=75.6J

You might be interested in
Workers do 8000 J of work on a 2000-N crate to push it up a ramp. If the ramp is 2 m high, what is the efficiency of the ramp?
IRISSAK [1]

Answer:

50%

Explanation:

Efficiency = work out / work in

e = Fd / W

e = (2000 N) (2 m) / (8000 J)

e = 0.5

7 0
2 years ago
Read 2 more answers
In the 25-ft Space Simulator facility at NASA's Jet Propulsion Laboratory, a bank of overhead arc lamps can produce light of int
Ugo [173]

Answer:

a. 8.33 x 10 ⁻⁶ Pa

b. 8.19 x 10 ⁻¹¹ atm

c. 1.65 x 10 ⁻¹⁰ atm

d. 2.778 x 10 ⁻¹⁴ kg / m²

Explanation:

Given:

a.

I = 2500 W / m² , us = 3.0 x 10 ⁸ m /s

P rad = I / us

P rad  = 2500 W / m² / 3.0 x 10 ⁸ m/s

P rad = 8.33 x 10 ⁻⁶ Pa

b.

P rad = 8.33 x 10 ⁻⁶ Pa *[  9.8 x 10 ⁻⁶ atm / 1 Pa ]

P rad = 8.19 x 10 ⁻¹¹ atm

c.

P rad = 2 * I / us = ( 2 * 2500 w / m²) / [ 3.0 x 10 ⁸ m /s ]

P rad = 1.67 x 10 ⁻⁵ Pa

P₁ = 1.013 x 10 ⁵ Pa /atm

P rad = 1.67 x 10 ⁻⁵ Pa / 1.013 x 10 ⁵ Pa /atm = 1.65 x 10 ⁻¹⁰ atm

d.

P rad  = I / us

ΔP / Δt = I / C² = [ 2500 w / m² ] / ( 3.0 x 10 ⁸ m/s)²

ΔP / Δt = 2.778 x 10 ⁻¹⁴ kg / m²

3 0
2 years ago
A father demonstrates projectile motion to his children by placing a pea on his fork's handle and rapidly depressing the curved
MariettaO [177]

Answer:

4.17 m/s

Explanation:

To solve this problem, let's start by analyzing the vertical motion of the pea.

The initial vertical velocity of the pea is

u_y = u sin \theta = (7.39)(sin 69.0^{\circ})=6.90 m/s

Now we can solve the problem by applying the suvat equation:

v_y^2-u_y^2=2as

where

v_y is the vertical velocity when the pea hits the ceiling

a=g=-9.8 m/s^2 is the acceleration of gravity

s = 1.90 is the distance from the ceiling

Solving for v_y,

v_y = \sqrt{u_y^2+2as}=\sqrt{(6.90)^2+2(-9.8)(1.90)}=3.22 m/s

Instead, the horizontal velocity remains constant during the whole motion, and it is given by

v_x = u cos \theta = (7.39)(cos 69.0^{\circ})=2.65 m/s

Therefore, the speed of the pea when it hits the ceiling is

v=\sqrt{v_x^2+v_y^2}=\sqrt{2.65^2+3.22^2}=4.17 m/s

5 0
2 years ago
A 4.00-kg box sits atop a 10.0-kg box on a horizontal table. The coefficient of kinetic friction between the two boxes and betwe
natta225 [31]
First, we have to calculate the normal forces on different surfaces.The normal force on the 4.00 kg, N1 = (4)(9.8) = 39.2 N. The normal force on the 10.0 kg, N2 = (14)(9.8) = 137.2 N. Looking at the 10.0 kg block, the static forces that counteract the pulling force equals the sum of the friction from the two surfaces. Fc = N1 * 0.80 + N2 * 0.80 = 141.12 N. Since the counter force is less than the pulling force, the blocks start to move and hence, kinetic frictions are considered.


Therefore, f1 = uk * N1 = (0.60)(39.2) = 23.52 N.
4 0
2 years ago
Briana swings a ball on the end of a rope in a circle. The rope is 1.5 m long. The ball completes a full circle every 2.2 s. Wha
schepotkina [342]
The radius of the circular path is 1.5 m.

The circumference is then
1.5\ m*2\pi=3\pi\ m

The ball moves 3π m every 2.2 s, so the speed is
\frac{3\pi\ m}{2.2\ s}\approx 4.3\ m/s
9 0
2 years ago
Read 2 more answers
Other questions:
  • Which of the following ways is usable energy lost?
    14·2 answers
  • A cyclist moving towards right with an acceleration of 4m/s² at t = 0 he has travelled 5 m moving towards the right at 15 m/s wh
    7·1 answer
  • A 1.7-kg block of wood rests on a rough surface. A 0.011-kg bullet strikes the block with a speed of 670 m/s and embeds itself.
    5·1 answer
  • Tendons are strong elastic fibers that attach muscles to bones. To a reasonable approximation, they obey Hooke's law. In laborat
    14·1 answer
  • the millersburg ferry (m=13000.0 kg loaded) puts its engines in full reverse and stops in 65 seconds. if the speed before brakin
    14·1 answer
  • The quantity of charge Q in coulombs (C) that has passed through a point in a wire up to time t (measured in seconds) is given b
    14·1 answer
  • An uncharged 30.0-µF capacitor is connected in series with a 25.0-Ω resistor, a DC battery, and an open switch. The battery has
    7·2 answers
  • Consider three starships that pass by an observer on Earth. Starship A is traveling at speed v=c/3v=c/3 relative to Earth and ha
    13·1 answer
  • A young child hold a string attached to a balloon. What is the reaction force to the balloon pulling up on the earth?
    12·1 answer
  • What is the work done by the 200.-N tension shown if it is used to drag the 150-N crate 25 m across the floor at a constant spee
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!