answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wariber [46]
2 years ago
7

A radio station's channel, such as 100.7 fm or 92.3 fm, is actually its frequency in megahertz (mhz), where 1mhz=106 hz and 1hz=

1s−1. calculate the broadcast wavelength of the radio station 88.70 fm.

Physics
2 answers:
Arte-miy333 [17]2 years ago
7 0

The broadcast wavelength of radio waves is \fbox{3.38\,{\text{m}}} or \fbox{338\,{\text{cm}}}.

Further Explanation:

Radio waves are one of the types of the electromagnetic radiation. It travels with the speed of light in vacuum. The range of frequency of radio waves is very large ranging from 30\,{\text{Hz}} - 300\,{\text{GHz}}.

Radio waves are used to transmitting the signal over a large distance on the Earth. Radio waves can go beyond the line of sight through diffraction and reflection. Radio waves are non ionizing radiation. They have not sufficient energy to separate electrons from atoms or molecules.

Transmitters are used to generating radio waves artificially and antennas are used to receiving the waves.

Given:

The frequency of radio waves is 88.7\,{\text{MHz}}.  

Concept:

The relationship between frequency and wavelength given by:

\fbox{\begin\\\lambda=\dfrac{c}{f}\end{minispace}}

Here, c is the speed of light, f is the frequency of radio waves, and \lambda is the wavelength of radio waves.

Substitute 88.7 \times {10^6}\,{\text{Hz}} for f and 3 \times {10^8}\text{ m}/\text{s} for c in above equation.

\begin{aligned}\lambda&=\frac{{3\times{{10}^8}\,{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}}}{{88.7\times{{10}^6}\,{\text{Hz}}}}\\&=3.38\,{\text{m}}\\&= 338}}\,{\text{cm}}\\\end{aligned}

Thus, the broadcast wavelength of the radio station is \fbox{3.38\,{\text{m}}}.

Learn more:

1.  Threshold frequency of cesium atom brainly.com/question/6953278

2.  Stress developed in a string brainly.com/question/12985068

3. Components of a lever brainly.com/question/1073452

Answer Details:

Grade: High School

Subject: Physics

Chapter: Electromagnetic waves

Keywords:

Frequency, broadcast wavelength, radio waves, radio station, 88.7fm, speed of light, broadcast, electromagnetic waves, channel. transmitters, 3.38m, 338 cm

AURORKA [14]2 years ago
6 0
The frequency of the radio station is
f=88.7 fm= 88.7 MHz = 88.7 \cdot 10^6 Hz

For radio waves (which are electromagnetic waves), the relationship between frequency f and wavelength \lambda is
\lambda= \frac{c}{f}
where c is the speed of light. Substituting the frequency of the radio station, we find the wavelength:
\lambda= \frac{3 \cdot 10^8 m/s}{88.7 \cdot 10^6 Hz}=3.38 m
You might be interested in
A 5.0-kg crate is resting on a horizontal plank. The coefficient of static friction is 0.50 and the coefficient of kinetic frict
Harlamova29_29 [7]

Answer:

The mass of the crate is 5kg.

We know that the force of friction can be obtained by:

F = N*k

where k is the coefficient of friction, where we use the static one if the object is at rest, and the kinetic one if the object os moving. N is the normal force

If we tilt the base making an angle of 30° with the horizontal, now the normal force against the plank will be equal to the fraction of the weight in the direction normal to the surface of the plank.

Knowing that the angle is 30°, then the fraction of the weight that pushes against the normal is Cos(30°)*W = cos(30°)*5kg*9.8m/s^2 = 42.4N

The fraction of the force in the parallel direction to the plank (the force that would accelerate the crate downwards) is:

F = sin(30°)*5k*9,8m/s = 24.5N

now, the statical friction force is:

Fs = 42.4N*0.5 = 21.2N

The statical force is less than the 24.5N, so the crate will move downwards, then the force that acts on the crate is the kinetic force of friction:

Fk = 42.4N*0.4 = 16.96N

Then, the total force that acts on the crate is:

total force = F - Fk = 24.5N - 16.69N = 7.54N and the direction of this force points downside along the parallel direction of the plank.

3 0
2 years ago
A goat enclosure is in the shape of a right triangle. One leg of the enclosure is built against the side of the barn. The other
san4es73 [151]

Answer:

16,18,22

Or

1,3,7

Explanation:

The detailed explanation is contained in the image attached. The lengths are found using Pythagoras theorem and the two lengths reflects the two values of x yielded by the quadratic equation

8 0
2 years ago
A metallic sphere of radius 2.0 cm is charged with +5.0-μC+5.0-μC charge, which spreads on the surface of the sphere uniformly.
sladkih [1.3K]

Answer:

Explanation:

Potential due to a charged metallic sphere having charge Q and radius r on its surface will be

v = k Q / r . On the surface and inside the metallic sphere , potential is the same . Outside the sphere , at a distance R from the centre  potential is

v = k Q / R

a ) On the surface of the shell , potential due to positive charge is

V₁ = \frac{9\times10^9\times5\times10^{-6}}{6\times10^{-2}}

On the surface of the shell , potential due to negative  charge is

V₁ = \frac{- 9\times10^9\times5\times10^{-6}}{6\times10^{-2}}

Total potential will be zero . they will cancel each other.

b ) On the surface of the sphere potential

= \frac{9\times10^9\times5\times10^{-6}}{2\times10^{-2}}

= 22.5 x 10⁵ V

On the surface of the sphere potential due to outer shell

= \frac{9\times10^9\times5\times10^{-6}}{5\times10^{-2}}

= -9 x 10⁵

Total potential

=( 22.5 - 9 ) x 10⁵

= 13.5 x 10⁵ V

c ) In the space between the two , potential will depend upon the distance of the point from the common centre .

d ) Inside the sphere , potential will be same as that on the surface that is

13.5 x 10⁵ V.

e ) Outside the shell , potential due to both positive and negative charge will cancel each other so it will be zero.

5 0
1 year ago
The absolute pressure, in kilopascals, a depth 10m below sea level is most nearly?
saul85 [17]

Answer:

option A

Explanation:

given,

depth of the sea level = 10 m

g = 10 m/s²

Pressure underwater = ?

we know,

P = ρ g h

where ρ is the density of water which is equal to 1000 kg/m³

h is the depth of sea level

P = ρ g h

P = 1000 x 10 x 10

P = 100000 Pa

P = 100 kPa

Hence, the correct answer is option A

8 0
2 years ago
The refractive index of glass is 1.65 find the speed of light in glass.
zzz [600]

The refractive index of flint glass is 1.65.what is the speed of light in the glass? speed of light in the air is 3 x 10 power 8 m/s

3 0
2 years ago
Other questions:
  • Noah drops a rock with a density of 1.73 g/cm3 into a pond. Will the rock float or sink?
    9·2 answers
  • Goal posts at the ends of football fields are padded as a safety measure for players who might run into them. How does thick pad
    9·2 answers
  • Explain how scientists know that elephants and hyraxes are related. Be sure to include anatomical similarities as well as fossil
    7·2 answers
  • If 10.0 liters of oxygen at stp are heated to 512 °c, what will be the new volume of gas if the pressure is also increased to 15
    15·1 answer
  • A toy car has a battery-powered fan attached to it such that the fan creates a constant force that is exerted on the car so that
    11·2 answers
  • You are driving on the highway, and you come to a steep downhill section. As you roll down the hill, you take your foot off the
    12·2 answers
  • A shift in one fringe in the Michelson-Morley experiment corresponds to a change in the round-trip travel time along one arm of
    7·1 answer
  • If you accidentally touch the "hot" wire connected to the 120 V line, how much current will pass through your body?
    8·1 answer
  • A diffusion couple composed of two silver– gold alloys is formed; these alloys have compositions of 98 wt% Ag–2 wt% Au and 95 wt
    10·1 answer
  • . Imagine that you are standing at the center of a giant bowl of gelatin. What type of wave will you make across the top of the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!