Answer:
0.647 nC
Explanation:
The force experienced by a charge due to the presence of an electric field is given by

where
q is the charge
E is the magnitude of the electric field
In this problem, each antenna is modelled as it was a single point charge, experiencing a force of

Therefore, if the electric field magnitude is

Then the charge on each antenna would be

Answer:
4m/s2
Explanation:
The following data were obtained from the question:
U (initial velocity) = 10m/s
V (final velocity) = 30m/s
t (time) = 5secs
a (acceleration) =?
Acceleration is the rate of change of velocity with time. It is represented mathematically as:
a = (V - U)/t
Now, with this equation i.e
a = (V - U)/t, we can calculate the acceleration of the race car as follow:
a = (V - U)/t
a = (30 - 10)/5
a = 20/5
a = 4m/s2
Therefore, the acceleration of the race car is 4m/s2
From the conservation of linear momentum of closed system,
Initial momentum = final momentum
Mass of the student, M = 59 kg
Mass of the laser boat, m = 42 kg
Initial speed of student + laser boat, u =0
Final speed of laser boat, v = 1.5 m/s
Final speed of the student = V
(M+m) u =M V +m v
0 = (59 kg) V + (42 kg) (1.5m/s)
V = - 1.06 m/s
Thus, the speed of the student is 1.06 m/s in the opposite direction of the motion of boat.
Answer:
The final temperature of the object will be 42.785 °C
Explanation:
When the heat added or removed from a substance causes a change in temperature in it, this heat is called sensible heat.
In other words, sensible heat is the amount of heat that a body absorbs or releases without any changes in its physical state (phase change), so that the temperature varies.
The equation for calculating the heat exchanges in this case is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature.
In this case:
- Q= 450 J
- c= 2.89

- m= 20 g
- ΔT= Tfinal - Tinitial= Tfinal - 35 °C
Replacing:
450 J= 2.89
*20 g* (Tfinal - 35°C)
Solving for Tfinal:

7.785 °C=Tfinal - 35°C
7.785 °C + 35°C= Tfinal
42.785 °C=Tfinal
<u><em>The final temperature of the object will be 42.785 °C</em></u>