answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sdas [7]
2 years ago
15

Whennes

Physics
1 answer:
rodikova [14]2 years ago
4 0

Answer:

See the explanation below.

Explanation:

12) When an object is falling, how does the objects velocity change? what formula do you use?

The speed of a falling object is increased by a value of 9.81 meters per second per second. That is if we throw any body regardless of mass from a considerable height, its speed in the first second will be 9.81[ m/ s] , in the next second will be equal to 19.62 [m/s] in the next will be equal to 29.43 [m/ s].

The formula is:

v=v_{0}+g*t

where:

vo = initial velocity = 0

g = gravity = 9.81[m/s^2]

t = time [s]

13)

what is a falling speed at 6s, 9s, 112s?

v = 0 + (9.81*6) = 58.86[m/s]

v = 0 + (9.81*9) = 88.29 [m/s]

v = 0 + (9*112) = 1098.72 [m/s]

14)

If an object is falling at 65 [m/s]. How long has it been falling ? what is the formula that you use?

The formula is the same:

v=v_{o}+g*t

65 = 0 + 9.81*t

t = 65/9.81

t = 6.62[s]

15)

What formula is used to determine the distance an object is falling ?

y = y_{o}+v_{o}*t + 0.5*9.81*t^{2}

where:

y = distance [m]

yo = initial distance, in most of the cases and depending of the reference point it will be eqaul to zero

vo = initial velocity, if it is free fall, then = 0

t = time [s]

g = gravity = 9.81[m/s^2]

This equation will be reduce to:

y =   0.5*g*t^{2}

16)

using the times given in problem 13. Determine the distance fallen for each.

y = 0.5*9,81*(6)^2 = 176.58 [m]

y = 0.5*9,81*(9)^2 = 397.3 [m]

y = 0.5*9,81*(112)^2 = 61528.3 [m]

17)

If an object has fallen a distance of 87.3 [m]. How long was it falling?

87.3 = 0.5*9.81*t^2

t=\sqrt{\frac{87.3}{0.5*9.81} }\\ t=4.21[s]

You might be interested in
A blue puck has a velocity of 0i – 3j m/s and a mass of 4 kg. A gold puck has a velocity of 12i – 5j m/s and a mass of 6 kg. Wha
Mnenie [13.5K]
By definition, the kinetic energy is given by:
 K = (1/2) * m * v ^ 2
 where
 m = mass
 v = speed
 We must then find the speed of both objects:
 blue puck
 v = root ((0) ^ 2 + (- 3) ^ 2) = 3
 gold puck
 v = root ((12) ^ 2 + (- 5) ^ 2) = 13
 Then, the kinetic energy of the system will be:
 K = (1/2) * m1 * v1 ^ 2 + (1/2) * m2 * v2 ^ 2
 K = (1/2) * (4) * (3 ^ 2) + (1/2) * (6) * (13 ^ 2)
 K = <span> 525</span> J
 answer
 The kinetic energy of the system is<span> <span>525 </span></span>J
6 0
2 years ago
A machine is currently set to a feed rate of 5.921 inches per minute (IPM). Te machinist changes this setting to 6.088 IPM. By h
lukranit [14]

Answer:

By 16.7% or 0.167 IPM

Explanation:

Substracting the final IPM (6.088) to the initial IPM (5.921) gives us the net difference, which is how much did it increase in IPM. Multiplying this number by 100 gives us the percentual increase in the feed rate.

4 0
2 years ago
Read 2 more answers
If Pete ( mass=90.0kg) weights himself and finds that he weighs 30.0 pounds, how far away from the surface of the earth is he
shutvik [7]

Answer: 9938.8 km

Explanation:

1 pound-force = 4.48 N

30.0 pounds-force = 134.4 N

The force of gravitation between Earth and object on the surface of is given by:

F = \frac{GMm}{R^2} = mg

Where M is the mass of the Earth, m is the mass of the object, R (6371 km) is the radius of the Earth.

At height, h above the surface of the Earth, the weight of the object:

(mg)'= \frac{GMm}{(R+h)^2}

we need to find "h"

taking the ratio of two:

\frac{mg}{(mg)'}=\frac{(R+h)^2}{R^2}\\ \Rightarrow \frac{90kg \times 9.8 m/s^2}{134.4 N}=\frac{(R+h)^2}{R^2}\\ \Rightarrow 6.56 R^2= (R+h)^2 \Rightarrow h= (2.56-1)R\\ \Rightarrow h = 1.56 R = 1.56 \times 6371 km = 9938. 8 km

Hence, Pete would weigh 30 pounds at 9938.8 km above the surface of the Earth.

5 0
2 years ago
A wave has a frequency of 34 Hz and a wavelength of 2.0 m. What is the speed of the wave? Use . A. 17 m/s B. 36 m/s C. 0.059 m/s
mel-nik [20]
F= (speed)/(wavelength)

Therefore, speed = Frequency x wavelength
  V = 68m/s
8 0
2 years ago
Read 2 more answers
Three objects of the same mass begin their motion at the same height. One object falls straight down, one slides down a low-fric
erik [133]

Answer:

D. Same

Explanation:

Because only gravity is doing the work on the objects, and gravity is constant for all the objects

4 0
2 years ago
Other questions:
  • How much does it cost to operate a 25-w soldering iron for 8.0 hours if energy costs 8.0¢/kwh?
    15·1 answer
  • The suns energy is classified by the
    15·2 answers
  • Suppose you are drinking root beer from a conical paper cup. The cup has a diameter of 10 centimeters and a depth of 13 centimet
    15·1 answer
  • A vehicle traveling on wet or slick roads can begin to _________ as water forms a barrier between the road and the tires and tra
    5·2 answers
  • The oscillating current in an electrical circuit is as follows, where I is measured in amperes and t is measured in seconds. I =
    15·1 answer
  • Find the average force exerted by the bat on the ball if the two are in contact for 0.00129 s. Answer in units of N.
    10·1 answer
  • The drag force F on a boat varies jointly with the wet surface area A of the boat and the square of the speed s of the boat. A b
    15·1 answer
  • A proton is released such that it has an initial speed of 4.0 · 105 m/s from left to right across the page. A magnetic field of
    15·1 answer
  • Which of the following scenarios would be optimal for obtaining a date from radioactive decay using these isotopes: 87Rb, 147Sm,
    5·1 answer
  • In mammals, the weight of the heart is approximately 0.5% of the total body weight. Write a linear model that gives the heart we
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!