2*3.5 = 7m/s
You multiply the acceleration per the time (they both are in seconds, otherwise, you should set them in the same units).
Complete Question:
Suppose that an asteroid traveling straight toward the center of the earth were to collide with our planet at the equator and bury itself just below the surface. What would have to be the mass of this asteroid, in terms of the earth’s mass M, for the day to become 25.0% longer than it presently is as a result of the collision? Assume that the asteroid is very small compared to the earth and that the earth is uniform throughout.
Answer:
m = 0.001 M
For the whole process check the following page: https://www.slader.com/discussion/question/suppose-that-an-asteroid-traveling-straight-toward-the-center-of-the-earth-were-to-collide-with-our/
Answer:
The answer to your question is Decrease
Answer:
v = 54.2 m / s
Explanation:
Let's use energy conservation for this problem.
Starting point Higher
Em₀ = U = m g h
Final point. Lower
= K = ½ m v²
Em₀ = Em_{f}
m g h = ½ m v²
v² = 2gh
v = √ 2gh
Let's calculate
v = √ (2 9.8 150)
v = 54.2 m / s
Using the given formula with v0=56 ft/s and h=40 ft
h = -16t2 + v0t
40 = -16t2 + 56t
16t2 - 56t + 40 = 0
Solving the quadratic equation:
t= (-b+/-(b^2-4ac)^1/2)/2a = (56+/-((-56)^2-4*16*40)^1/2)/2*16 = (56 +/- 24) / 32
We have two possible solutions
t1 = (56+24)/32 = 2.5
t2 = (56-24)/32 = 1
So initially the ball reach a height of 40 ft in 1 second.