The intensity of a light in a surface follows the inverse square law formula which can be mathematically expressed as,
I = k/d²
where I is intensity, d is distance, and k is the proportionality constant. For us to increase the intensity, we should lower the distance from the source to the surface.
Answer: a=9.8*10^-10s
b=9.8*10^-13s
c=1.7*10^-8s
d=5.57*10^-4s
Explanation:
a) given 980 ps
Expected answer is 980 * 10^-12
Therefore, 980ps = 9.8*10^-10s
b) given 980 fs
Expected answer is 980 * 10^-15
Therefore, 980fs = 9.8*10^-13s
c) given 17 ns
Expected answer is 17 * 10^-9
Therefore, 17ns = 1.7*10^-8s
d) given 577 μs
Expected answer is 577 * 10^-6
Therefore, 577μs = 5.57*10^-4s
a=9.8*10^-10s
b=9.8*10^-13s
c=1.7*10^-8s
d=5.57*10^-4s
Answer:
4.8967m
Explanation:
Given the following data;
M = 0.2kg
∆p = 0.58kgm/s
S(i) = 2.25m
Ratio h/w = 12/75
Firstly, we use conservation of momentum to find the velocity
Therefore, ∆p = MV
0.58kgm/s = 0.2V
V = 0.58/2
V = 2.9m/s
Then, we can use the conservation of energy to solve for maximum height the car can go
E(i) = E(f)
1/2mV² = mgh
Mass cancels out
1/2V² = gh
h = 1/2V²/g = V²/2g
h = (2.9)²/2(9.8)
h = 8.41/19.6 = 0.429m
Since we have gotten the heigh, the next thing is to solve for actual slant of the ramp and initial displacement using similar triangles.
h/w = 0.429/x
X = 0.429×75/12
X = 2.6815
Therefore, by Pythagoreans rule
S(ramp) = √2.68125²+0.429²
S(ramp) = 2.64671
Finally, S(t) = S(ramp) + S(i)
= 2.64671+2.25
= 4.8967m
1) metal
Even though metalloids are also conductors of heat and electricity, malleable they are not as good as metals.
Metals are very good conductors of electricity and heat. They are also very hard to touch. Noble gases and non metals are the exact opposite in physical and chemical properties. Metals readily react with oxygen.
"At ground level, ozone contributes to smog" so it is also an air pollutant.
Option: A
<u>Explanation</u>:
ozone is naturally present in stratosphere and acts as shield against harmful ultraviolet radiations. But it acts a pollutant contributing to global warming when it is present in lower level atmosphere particularly troposphere. In this level it combines with primary pollutants that is "nitrogen oxides" and "volatile organic" compounds to form secondary pollutant which absorbs outgoing radiation and contributes in raising the temperature. It has harmful impacts on vegetation as well as human health.