Answer:
a. The total momentum of the trolleys which are at rest before the separation is zero
b. The total momentum of the trolleys after separation is zero
c. The momentum of the 2 kg trolley after separation is 12 kg·m/s
d. The momentum of the 3 kg trolley is -12 kg·m/s
e. The velocity of the 3 kg trolley = -4 m/s
Explanation:
a. The total momentum of the trolleys which are at rest before the separation is zero
b. By the principle of the conservation of linear momentum, the total momentum of the trolleys after separation = The total momentum of the trolleys before separation = 0
c. The momentum of the 2 kg trolley after separation = Mass × Velocity = 2 kg × 6 m/s = 12 kg·m/s
d. Given that the total momentum of the trolleys after separation is zero, the momentum of the 3 kg trolley is equal and opposite to the momentum of the 2 kg trolley = -12 kg·m/s
e. The momentum of the 3 kg trolley = Mass of the 3 kg Trolley × Velocity of the 3 kg trolley
∴ The momentum of the 3 kg trolley = 3 kg × Velocity of the 3 kg trolley = -12 kg·m/s
The velocity of the 3 kg trolley = -12 kg·m/s/(3 kg) = -4 m/s
Answer:
<h3>The answer is 4.53 kgm/s</h3>
Explanation:
The momentum of an object can be found by using the formula
<h3>momentum = mass × velocity</h3>
From the question
mass = 62 g = 0.062 kg
velocity = 73 m/s
We have
momentum = 0.062 × 73 = 4.526
We have the final answer as
<h3>4.53 kgm/s</h3>
Hope this helps you
A challenge scientists face with this process is the use of ultrathin iron oxide, to pull protons off water and produce hydrogen gas, which itself is a poor electrical conductor.
Answer:
Magnification, m = 3
Explanation:
It is given that,
Focal length of the lens, f = 15 cm
Object distance, u = -10 cm
Lens formula :

v is image distance

Magnification,

So, the magnification of the lens is 3.